Response of the pituitary and thyroid to tropic hormones in Sprague-Dawley versus Fischer 344 male rats. 1999

P A Fail, and S A Anderson, and M A Friedman
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194, USA. patf@rti.org

Modulation of endocrine function is frequently a confounding factor in the interpretation of chronic rodent toxicology studies. Of particular interest are agents that cause deviation of thyroid hormone homeostasis and result in thyroid cancer for rodents. An endocrine challenge test (ECT), commonly used to study endocrine organ health in human and veterinary medicine, quantifies the response of the thyroid to tropic hormones. This study compared the response of Fischer (F344) and Sprague-Dawley (SD) rats to a thyrotropin-releasing hormone (TRH) ECT and a thyroid-stimulating hormone (TSH) ECT and characterized the dose-response curve. TSH, thyroxine (T4), triiodothyronine (T3), and prolactin responses were characterized for several doses of TRH over a 4-h time period. Animals were equipped with intra-atrial cannulae and were free moving at all times during blood sampling. Both strains of rats responded to intravenous TRH by releasing TSH into their blood in a dose-responsive fashion. At doses of > or = 100 ng, TSH concentrations were increased by more than 2-fold at 2 min. Concentrations reached a maximum at 15 min for doses of 100 ng/100 g body weight (bw) to 5000 ng/100g bw. The effective dose 50 (ED50) of TRH (that dose causing release of half maximal TSH concentrations) was 61 ng in F344 rats and 78 ng in SD rats. The ED75 was 173 ng and 217 ng/100 g bw, respectively. The response of T4 and T3 after TRH ECT and TSH ECT was highly variable. F344 rats responded with an increase in levels of both hormones, starting at 60 min and continuing through 240 min. In SD rats, the presence of a thyroid hormone response (T4) was present, although that of T3 was not clear. These data provide essential information for design of toxicology studies focused on the effects of toxicants and drugs on the pituitary-thyroid axis.

UI MeSH Term Description Entries
D008297 Male Males
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012636 Secretory Rate The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa. Rate, Secretory,Rates, Secretory,Secretory Rates
D013961 Thyroid Gland A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively. Thyroid,Gland, Thyroid,Glands, Thyroid,Thyroid Glands,Thyroids
D013963 Thyroid Hormones Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs. Thyroid Hormone,Hormone, Thyroid,Hormones, Thyroid
D013973 Thyrotropin-Releasing Hormone A tripeptide that stimulates the release of THYROTROPIN and PROLACTIN. It is synthesized by the neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, TRH (was called TRF) stimulates the release of TSH and PRL from the ANTERIOR PITUITARY GLAND. Protirelin,Thyroliberin,Abbott-38579,Antepan,Proterelin Tartrate,Proterelin Tartrate Hydrate,Protirelin Tartrate (1:1),Relefact TRH,Stimu-TSH,TRH Ferring,TRH Prem,Thypinone,Thyroliberin TRH Merck,Thyrotropin-Releasing Factor,Thyrotropin-Releasing Hormone Tartrate,Abbott 38579,Abbott38579,Hydrate, Proterelin Tartrate,Prem, TRH,Stimu TSH,StimuTSH,TRH, Relefact,Tartrate Hydrate, Proterelin,Thyrotropin Releasing Factor,Thyrotropin Releasing Hormone,Thyrotropin Releasing Hormone Tartrate

Related Publications

P A Fail, and S A Anderson, and M A Friedman
September 1990, Toxicology letters,
P A Fail, and S A Anderson, and M A Friedman
February 1984, The American journal of physiology,
P A Fail, and S A Anderson, and M A Friedman
January 1989, Fundamental and applied toxicology : official journal of the Society of Toxicology,
P A Fail, and S A Anderson, and M A Friedman
February 1994, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
P A Fail, and S A Anderson, and M A Friedman
January 1983, Comparative biochemistry and physiology. B, Comparative biochemistry,
P A Fail, and S A Anderson, and M A Friedman
October 2002, Anti-cancer drugs,
P A Fail, and S A Anderson, and M A Friedman
January 1988, Toxicologic pathology,
P A Fail, and S A Anderson, and M A Friedman
May 1993, Free radical biology & medicine,
P A Fail, and S A Anderson, and M A Friedman
March 2011, Pharmacology, biochemistry, and behavior,
P A Fail, and S A Anderson, and M A Friedman
January 2002, Toxicological sciences : an official journal of the Society of Toxicology,
Copied contents to your clipboard!