Single-dose oral pharmacokinetics of three formulations of thalidomide in healthy male volunteers. 1999

S K Teo, and W A Colburn, and S D Thomas
Celgene Corporation, Warren, New Jersey 07059, USA.

Thalidomide was recently approved in the United States for the treatment of erythema nodosum leprosum, a complication of leprosy. The present study determined the bioequivalence and pharmacokinetics of Celgene's commercial and clinical trial thalidomide formulations and the Brazilian Tortuga formulation in an open-label, single-dose, three-way crossover design. Seventeen healthy subjects were given 200 mg of thalidomide on three occasions, and blood samples were collected over 48 hours. Pharmacokinetic parameters were determined using compartmental methods for the two Celgene formulations and using noncompartmental methods for all three formulations. All subjects reported adverse events, none of which was serious or unexpected. Celgene formulations were bioequivalent when comparing Cmax, tmax, and AUC. There was significant variability in plasma levels from the Tortuga formulation, giving a mean profile that was distinctly different from the two Celgene formulations with a lower Cmax value and a longer terminal phase. The lower Cmax was probably due to slower absorption. The terminal rate constant for the Tortuga formulation was significantly less, giving rise to a terminal half-life of 15 hours compared to about 5 to 6 hours for the Celgene formulations. Confidence intervals for Cmax between the Tortuga and the Celgene formulations were outside the 80% to 125% range, indicating a lack of bioequivalence. Extent of absorption, as measured by AUC0-infinity, was approximately equal for all three formulations. Terminal half-life for Tortuga was two to three times longer compared to the Celgene formulations and is clear evidence for absorption rate limitations. The two Celgene formulations showed similar pharmacokinetic parameters with profiles that were best described by a one-compartment model with first-order absorption and elimination. The authors conclude that Celgene's clinical trial and commercial thalidomide formulations are similar to each other and distinctly different from the Tortuga formulation and that all three formulations exhibited absorption rate-limited elimination.

UI MeSH Term Description Entries
D007917 Leprostatic Agents Substances that suppress Mycobacterium leprae, ameliorate the clinical manifestations of leprosy, and/or reduce the incidence and severity of leprous reactions. Antileprotic Agents,Leprostatics,Agents, Antileprotic,Agents, Leprostatic
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013792 Thalidomide A piperidinyl isoindole originally introduced as a non-barbiturate hypnotic, but withdrawn from the market due to teratogenic effects. It has been reintroduced and used for a number of immunological and inflammatory disorders. Thalidomide displays immunosuppressive and anti-angiogenic activity. It inhibits release of TUMOR NECROSIS FACTOR-ALPHA from monocytes, and modulates other cytokine action. Sedoval,Thalomid
D013810 Therapeutic Equivalency The relative equivalency in the efficacy of different modes of treatment of a disease, most often used to compare the efficacy of different pharmaceuticals to treat a given disease. Bioequivalence,Clinical Equivalency,Equivalency, Therapeutic,Generic Equivalency,Clinical Equivalencies,Equivalencies, Clinical,Equivalencies, Therapeutic,Equivalency, Clinical,Therapeutic Equivalencies,Bioequivalences,Equivalencies, Generic,Equivalency, Generic,Generic Equivalencies
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D018592 Cross-Over Studies Studies comparing two or more treatments or interventions in which the subjects or patients, upon completion of the course of one treatment, are switched to another. In the case of two treatments, A and B, half the subjects are randomly allocated to receive these in the order A, B and half to receive them in the order B, A. A criticism of this design is that effects of the first treatment may carry over into the period when the second is given. (Last, A Dictionary of Epidemiology, 2d ed) Cross-Over Design,Cross-Over Trials,Crossover Design,Crossover Studies,Crossover Trials,Cross Over Design,Cross Over Studies,Cross Over Trials,Cross-Over Designs,Cross-Over Study,Crossover Designs,Crossover Study,Design, Cross-Over,Design, Crossover,Designs, Cross-Over,Designs, Crossover,Studies, Cross-Over,Studies, Crossover,Study, Cross-Over,Study, Crossover,Trial, Cross-Over,Trial, Crossover,Trials, Cross-Over,Trials, Crossover

Related Publications

S K Teo, and W A Colburn, and S D Thomas
January 1994, Journal of cardiovascular pharmacology,
S K Teo, and W A Colburn, and S D Thomas
April 1997, British journal of clinical pharmacology,
S K Teo, and W A Colburn, and S D Thomas
January 1989, Drug metabolism and disposition: the biological fate of chemicals,
S K Teo, and W A Colburn, and S D Thomas
February 2006, Therapeutic drug monitoring,
S K Teo, and W A Colburn, and S D Thomas
March 2015, Nutrition research (New York, N.Y.),
Copied contents to your clipboard!