Sterol regulatory element-binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. 1999

D Lopez, and M P McLean
Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa 33606, USA.

The high density lipoprotein (HDL) receptor, or scavenger receptor class B type I (SR-BI), is critical for cholesterol transport and a potential target for hypercholesterolemic drugs. Thus, elucidation of the mechanism underlying regulation of the HDL receptor SR-BI gene is essential. It has been previously shown that there is a correlation between depletion in ovarian cholesteryl ester content and increased HDL receptor SR-BI expression in response to hormonal stimulation. We wanted to determine whether the levels of mature sterol response element-binding protein-1a (SREBP-1a), a key protein in the transcriptional regulation of several genes by sterols, are affected under these conditions. Thus, Western blot analysis was carried out. Consistent with the possibility that SREBP-1a may be involved in the regulation of the HDL receptor SR-BI gene, we found that mature SREBP-1a levels increased up to 11-fold in the ovary after treatment with 50 U hCG. This increase in mature SREBP-1a protein levels correlated with a 30% decrease in ovarian cholesterol levels. These changes in both SREBP-1a and cholesterol levels preceded a 2-fold induction of HDL receptor SR-BI protein levels. To determine whether SREBP-1a could directly regulate the expression of the rat HDL receptor SR-BI gene, approximately 2.2 kb of the receptor SR-BI promoter were cloned and sequenced, and deletion analysis and mobility shift assays were performed. The results of these studies demonstrate that the rat HDL receptor SR-BI promoter contains two sterol response elements (pSRE and dSRE) through which SREBP-1a can bind and activate transcription of this gene. These motifs are similar to known SRE motifs reported for sterol-sensitive genes, and the pSRE is located between two Sp1 sites, similar to the SRE-1 motif in the low density lipoprotein receptor. The cysteine protease inhibitor N-acetyl-leucyl-leucyl-norleucinal, which inhibits SREBP degradation, enhanced the effect of SREBP-1a on the regulation of the rat HDL receptor SR-BI gene. It has previously been shown that tropic hormones such as hCG can also influence gene expression by increasing cAMP levels. Consistent with this fact, we have recently shown that steroidogenic factor-1 (SF-1) mediates cAMP activation of the HDL receptor SR-BI gene. Thus, we decided to examine whether SREBP-1a could cooperate with SF-1 to enhance transcription this gene. The results confirm that indeed both SF-1 and SREBP-1a synergize to induce HDL receptor SR-BI gene expression.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

D Lopez, and M P McLean
January 1996, Proceedings of the National Academy of Sciences of the United States of America,
D Lopez, and M P McLean
October 2000, The Journal of biological chemistry,
Copied contents to your clipboard!