Comparative inhibitory potential of differently modified antisense oligodeoxynucleotides on hepatitis C virus translation. 1999

M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
Max Planck Institute for Biochemistry, Martinsried, Bonn, Germany.

BACKGROUND A completely modified phosphorothioate antisense oligodeoxynucleotide (cS-ODN 4) directed against nucleotides 326-348 of the hepatitis C virus (HCV) 5' non-coding region (NCR) efficiently inhibits viral gene expression. As cS-ODN exerts undesired side-effects in vivo, we synthesized partially modified ODN 4 that contained only six modified nucleotides which are located at the ODN termini or are scattered along the molecule. The tested modifications were polar phosphorothioates (S) and non-polar methyl- (M) or benzylphosphonates (B). RESULTS In an in vitro translation system, specific inhibition of HCV gene expression by M-ODN 4 or B-ODN 4 was observed if terminally modified ODN were used; the maximal inhibition was 92.3% +/- 1.9% and 87.1% +/- 3.7%, respectively, at 10 microgram mol L-1 concentration. S-ODN 4 specifically suppressed viral translation irrespective of the location of the modifications, resulting in a maximal inhibition of 86.3% +/- 3.3%. For all terminally modified ODNs the therapeutic index was high, with tB-ODN 4 the second best at 3.8. Inhibition correlated with efficient RNase H-associated cleavage of target RNA. In transient co-transfection experiments of HepG2 cells with a reporter gene construct and the ODN, terminally modified B-ODN 4 was the most effective and specific inhibitor. At a concentration of 5 microgram mol L-1 the suppression of HCV translation was 96.3% +/- 0.7%. CONCLUSIONS These data demonstrate that terminally modified B-ODN 4 is a potent inhibitor of HCV gene expression in vitro and in HepG2 cell culture and may be valuable for future antiviral treatment.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
January 2013, Antiviral research,
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
June 1989, Nucleic acids research,
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
December 1995, Journal of biochemistry,
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
October 1996, Antimicrobial agents and chemotherapy,
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
April 1999, Antisense & nucleic acid drug development,
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
January 1999, Nucleosides & nucleotides,
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
May 1991, Lancet (London, England),
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
January 1997, Archives of virology,
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
December 2001, Journal of medical virology,
M Alt, and S Eisenhardt, and M Serwe, and R Renz, and J W Engels, and W H Caselmann
March 1999, Journal of medical virology,
Copied contents to your clipboard!