Priming interleukin 8 production: role of platelet-activating factor and p38. 1999

S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
Department of Surgery, University of Washington, Seattle 98195, USA. sarbabi@u.washington.edu

OBJECTIVE Platelet-activating factor (PAF) activates p38, an important intracellular signal transduction kinase, and primes human mononuclear cells for the production of interleukin 8 (IL-8), a potent chemoattractant and activator of neutrophils. METHODS Human mononuclear cells were isolated from healthy adults by Ficoll-paque density-gradient centrifugation. Interleukin-8 in the supernatant was measured by enzyme-linked immunosorbent assay. Dual phospho-specific p38 antibody was used to detect activated p38 by Western blotting. RESULTS Lipopolysaccharide (LPS) and PAF activated p38. There was a shorter latency to peak p38 activation with PAF vs LPS stimulation, 5 vs 30 minutes. Platelet-activating factor-induced p38 activation was calcium dependent because it was inhibited by ethyleneglycoltetracetic acid. Lipopolysaccharide, 0.01 to 1.00 ng/mL, induced significant IL-8 production. Although PAF did not induce significant IL-8 production, it potentiated LPS-induced IL-8 production. Production of IL-8, in response to LPS alone or in combination with PAF, was inhibited by SB202190, a specific p38 inhibitor. CONCLUSIONS Although LPS and PAF activated p38, only LPS induced IL-8 production; PAF acted as a priming agent. It seems that p38 activation is necessary but not sufficient for IL-8 production by human mononuclear cells. Identifying and evaluating the activation state of inflammatory signal transduction pathways might lead to methods for controlling and preventing neutrophil-induced tissue injury without interfering with the normal host immune response.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating
D048051 p38 Mitogen-Activated Protein Kinases A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens. Mitogen-Activated Protein Kinase p38,p38 Mitogen-Activated Protein Kinase,p38 MAP Kinase,p38 MAPK,p38 Protein Kinase,p38 SAPK,MAP Kinase, p38,MAPK, p38,Mitogen Activated Protein Kinase p38,Protein Kinase, p38,p38 Mitogen Activated Protein Kinase,p38 Mitogen Activated Protein Kinases

Related Publications

S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
November 1994, Archives of surgery (Chicago, Ill. : 1960),
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
April 1996, Journal of leukocyte biology,
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
October 1998, American journal of respiratory cell and molecular biology,
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
January 1997, The American journal of physiology,
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
November 1992, The Journal of allergy and clinical immunology,
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
January 1991, International archives of allergy and applied immunology,
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
July 1992, The Journal of biological chemistry,
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
February 2012, Biochimica et biophysica acta,
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
August 2000, The Journal of investigative dermatology,
S Arbabi, and M R Rosengart, and I Garcia, and S Jelacic, and R V Maier
May 2000, Wei sheng yan jiu = Journal of hygiene research,
Copied contents to your clipboard!