Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase. 1999

H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA.

Retroviral revXerse transcriptases (RTs) have an associated RNase H activity that can cleave RNA-DNA duplexes with considerable precision. We believe that the structure of the RNA-DNA duplexes in the context of RT determines the specificity of RNase H cleavage. To test this idea, we treated three related groups of synthetic RNA-DNA hybrids with either Moloney murine leukemia virus (MLV) RT or human immunodeficiency virus type 1 (HIV-1) RT. All of the hybrids were prepared using the same 81-base RNA template. The first series of RNase H substrates was prepared with complementary DNA oligonucleotides of different lengths, ranging from 6 to 20 nucleotides, all of which shared a common 5' end and were successively shorter at their 3' ends. The second series of oligonucleotides had a common 3' end but shorter 5' ends. The DNA oligonucleotides in the third series were all 20 bases long but had non-complementary stretches at either the 5' end, 3' end, or both ends. Several themes have emerged from the experiments with these RNA-DNA duplexes. (1) Both HIV-1 RT and MLV RT cleave fairly efficiently if the duplex region is at least eight bases long, but not if it is shorter. (2) Although, under the conditions we have used, both enzymes require the substrate to have a region of RNA-DNA duplex, both MLV RT and HIV-1 RT can cleave RNA outside the region that is part of the RNA-DNA duplex. (3) The polymerase domain of HIV-1 RT uses certain mismatched segments of RNA-DNA to position the enzyme for RNase H cleavage, whereas the polymerase domain of MLV RT does not use the same mismatched segments to define the position for RNase H cleavage. (4) For HIV-1 RT, a mismatched region near the RNase H domain can interfere with RNase H cleavage; cleavage is usually (but not always) more efficient if the mismatched segment is deleted. These results are discussed in regard to the structure of HIV-1 RT and the differences between HIV-1 RT and MLV RT.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D008979 Moloney murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk. Moloney Leukemia Virus,Leukemia Virus, Moloney,Virus, Moloney Leukemia
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009692 Nucleic Acid Heteroduplexes Double-stranded nucleic acid molecules (DNA-DNA or DNA-RNA) which contain regions of nucleotide mismatches (non-complementary). In vivo, these heteroduplexes can result from mutation or genetic recombination; in vitro, they are formed by nucleic acid hybridization. Electron microscopic analysis of the resulting heteroduplexes facilitates the mapping of regions of base sequence homology of nucleic acids. Heteroduplexes, Nucleic Acid,Heteroduplex DNA,Acid Heteroduplexes, Nucleic,DNA, Heteroduplex
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase

Related Publications

H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
September 2015, Protein expression and purification,
H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
December 2005, Antimicrobial agents and chemotherapy,
H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
November 1992, Proceedings of the National Academy of Sciences of the United States of America,
H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
July 2014, Antimicrobial agents and chemotherapy,
H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
April 1989, The Journal of biological chemistry,
H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
January 1996, The Journal of biological chemistry,
H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
February 1993, Proceedings of the National Academy of Sciences of the United States of America,
H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
January 1991, The Journal of general virology,
H Q Gao, and S G Sarafianos, and E Arnold, and S H Hughes
March 1988, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!