Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme. 2000

A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
Institut für Biochemie, Universität Münster, Wilhelm-Klemm-Strasse 2, D-48149 Münster, Germany.

A unique feature of fatty acid synthase (FAS) type II of higher plants and bacteria is 3-oxoacyl-[acyl-carrier-protein (ACP)] synthase III (KAS III), which catalyses the committing condensing reaction. Working with KAS IIIs from Cuphea seeds we obtained kinetic evidence that KAS III catalysis follows a Ping-Pong mechanism and that these enzymes have substrate-binding sites for acetyl-CoA and malonyl-ACP. It was the aim of the present study to identify these binding sites and to elucidate the catalytic mechanism of recombinant Cuphea wrightii KAS III, which we expressed in Escherichia coli. We engineered mutants, which allowed us to dissect the condensing reaction into three stages, i.e. formation of acyl-enzyme, decarboxylation of malonyl-ACP, and final Claisen condensation. Incubation of recombinant enzyme with [1-(14)C]acetyl-CoA-labelled Cys(111), and the replacement of this residue by Ala and Ser resulted in loss of overall condensing activity. The Cys(111)Ser mutant, however, still was able to bind acetyl-CoA and to catalyse subsequent binding and decarboxylation of malonyl-ACP to acetyl-ACP. We replaced His(261) with Ala and Arg and found that the former lost activity, whereas the latter retained overall condensing activity, which indicated a general-base action of His(261). Double mutants Cys(111)Ser/His(261)Ala and Cys(111)Ser/His(261)Arg were not able to catalyse overall condensation, but the double mutant containing Arg induced decarboxylation of [2-(14)C]malonyl-ACP, a reaction indicating the role of His(261) in general-acid catalysis. Finally, alanine scanning revealed the involvement of Arg(150) and Arg(306) in KAS III catalysis. The results offer for the first time a detailed mechanism for a condensing reaction catalysed by a FAS type II condensing enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012639 Seeds The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield. Diaspores,Elaiosomes,Embryos, Plant,Plant Embryos,Plant Zygotes,Zygotes, Plant,Diaspore,Elaiosome,Embryo, Plant,Plant Embryo,Plant Zygote,Seed,Zygote, Plant
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015099 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase An enzyme of long-chain fatty acid synthesis, that adds a two-carbon unit from malonyl-(acyl carrier protein) to another molecule of fatty acyl-(acyl carrier protein), giving a beta-ketoacyl-(acyl carrier protein) with the release of carbon dioxide. EC 2.3.1.41. 3 Oxoacyl (Acyl Carrier Protein) Synthase,3-Keto-ACP Synthase,3-Oxoacyl (Acyl Carrier Protein) Synthase,3-Oxoacyl Synthetase,Acyl-Malonyl-ACP Condensing Enzyme,beta Keto Acyl Synthetase,beta Keto-Acyl Carrier Protein Synthase I,beta Keto-Acyl Carrier Protein Synthase II,beta Ketoacyl ACP Synthase,beta-Ketoacyl-Coenzyme A (CoA) Synthase,3 Keto ACP Synthase,3 Oxoacyl Synthetase,Acyl Malonyl ACP Condensing Enzyme,Condensing Enzyme, Acyl-Malonyl-ACP,Synthase, 3-Keto-ACP,Synthetase, 3-Oxoacyl,beta Keto Acyl Carrier Protein Synthase I,beta Keto Acyl Carrier Protein Synthase II
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
May 1995, Plant physiology,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
March 1998, The Plant journal : for cell and molecular biology,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
May 2008, Acta crystallographica. Section F, Structural biology and crystallization communications,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
December 1999, The Journal of biological chemistry,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
October 1992, The Journal of biological chemistry,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
December 1993, Plant physiology,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
January 1997, The Biochemical journal,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
March 1966, The Journal of biological chemistry,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
October 2006, Biochemistry and cell biology = Biochimie et biologie cellulaire,
A Abbadi, and M Brummel, and B S Schütt, and M B Slabaugh, and R Schuch, and F Spener
May 2009, Journal of molecular modeling,
Copied contents to your clipboard!