Evidence for involvement of group II/III metabotropic glutamate receptors in NMDA receptor-independent long-term potentiation in area CA1 of rat hippocampus. 1999

L M Grover, and C Yan
Department of Physiology, Marshall University School of Medicine, Huntington, West Virginia 25755-9340, USA.

Previous studies implicated metabotropic glutamate receptors (mGluRs) in N-methyl-D-aspartate (NMDA) receptor-independent long-term potentiation (LTP) in area CA1 of the rat hippocampus. To learn more about the specific roles played by mGluRs in NMDA receptor-independent LTP, we used whole cell recordings to load individual CA1 pyramidal neurons with a G-protein inhibitor [guanosine-5'-O-(2-thiodiphosphate), GDPbetaS]. Although loading postsynaptic CA1 pyramidal neurons with GDPbetaS significantly reduced G-protein dependent postsynaptic potentials, GDPbetaS failed to prevent NMDA receptor- independent LTP, suggesting that postsynaptic G-protein-dependent mGluRs are not required. We also performed a series of extracellular field potential experiments in which we applied group-selective mGluR antagonists. We had previously determined that paired-pulse facilitation (PPF) was decreased during the first 30-45 min of NMDA receptor-independent LTP. To determine if mGluRs might be involved in these PPF changes, we used a twin-pulse stimulation protocol to measure PPF in field potential experiments. NMDA receptor-independent LTP was prevented by a group II mGluR antagonist [(2S)-alpha-ethylglutamic acid] and a group III mGluR antagonist [(RS)-alpha-cyclopropyl-4-phosphonophenylglycine], but was not prevented by other group II and III mGluR antagonists [(RS)-alpha-methylserine-O-phosphate monophenyl ester or (RS)-alpha-methylserine-O-phosphate]. NMDA receptor-independent LTP was not prevented by either of the group I mGluR antagonists we examined, (RS)-1-aminoindan-1,5-dicarboxylic acid and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester. The PPF changes which accompany NMDA receptor-independent LTP were not prevented by any of the group-selective mGluR antagonists we examined, even when the LTP itself was blocked. Finally, we found that tetanic stimulation in the presence of group III mGluR antagonists lead to nonspecific potentiation in control (nontetanized) input pathways. Taken together, our results argue against the involvement of postsynaptic group I mGluRs in NMDA receptor-independent LTP. Group II and/or group III mGluRs are required, but the specific details of the roles played by these mGluRs in NMDA receptor-independent LTP are uncertain. Based on the pattern of results we obtained, we suggest that group II mGluRs are required for induction of NMDA receptor-independent LTP, and that group III mGluRs are involved in determining the input specificity of NMDA receptor-independent LTP by suppressing potentiation of nearby, nontetanized synapses.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013873 Thionucleotides Nucleotides in which the base moiety is substituted with one or more sulfur atoms.
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

L M Grover, and C Yan
September 1998, European journal of pharmacology,
L M Grover, and C Yan
December 1995, The European journal of neuroscience,
Copied contents to your clipboard!