Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. 1978

F D Warner, and D R Mitchell
Department of Biology, Syracuse University, New York 13210, USA.

The sliding tubule model of ciliary motion requires that active sliding of microtubules occur by cyclic cross-bridging of the dynein arms. When isolated, demembranated Tetrahymena cilia are allowed to spontaneously disintegrate in the presence of ATP, the structural conformation of the dynein arms can be clearly resolved by negative contrast electron microscopy. The arms consist of three structural subunits that occur in two basic conformations with respect to the adjacent B subfiber. The inactive conformation occurs in the absence of ATP and is characterized by a uniform, 32 degrees base-directed polarity of the arms. Inactive arms are not attached to the B subfiber of adjacent doublets. The bridged conformation occurs strictly in the presence of ATP and is characterized by arms having the same polarity as inactive arms, but the terminal subunit of the arms has become attached to the B subfiber. In most instances the bridged conformation is accompanied by substantial tip-directed sliding displacement of the bridged doublets. Because the base-directed polarity of the bridged arms is opposite to the direction required for force generation in these cilia and because the bridges occur in the presence of ATP, it is suggested that the bridged conformation may represent the initial attachment phase of the dynein cross-bridge cycle. The force-generating phase of the cycle would then require a tip-directed deflection of the arm subunit attached to the B subfiber.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013769 Tetrahymena pyriformis A species of ciliate protozoa used extensively in genetic research. Tetrahymena pyriformi,pyriformi, Tetrahymena

Related Publications

F D Warner, and D R Mitchell
August 1990, Journal of muscle research and cell motility,
F D Warner, and D R Mitchell
November 1987, Journal of biochemistry,
F D Warner, and D R Mitchell
January 1986, Methods in enzymology,
F D Warner, and D R Mitchell
June 1985, Cell,
F D Warner, and D R Mitchell
January 1996, The Journal of eukaryotic microbiology,
F D Warner, and D R Mitchell
May 1977, Proceedings of the National Academy of Sciences of the United States of America,
F D Warner, and D R Mitchell
August 1980, The Journal of cell biology,
F D Warner, and D R Mitchell
January 1983, Acta obstetricia et gynecologica Scandinavica,
F D Warner, and D R Mitchell
May 1977, Biochimica et biophysica acta,
Copied contents to your clipboard!