Genetic characterisation of protective vaccine responses in sheep using multi-valent Dichelobacter nodosus vaccines. 1999

H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
Department of Veterinary Clinical Science, University of Sydney, Camden, NSW, Australia.

Protective vaccine responses to nine distinct serogroups of Dichelobacter nodosus (serogroups A-I) can be readily measured by serogroup-specific K-agglutinating antibody titres. On the basis of a large quantitative genetic experiment (1200 progeny from 129 sire groups), it was shown that variation in antibody responses following vaccination with a multi-valent pilus antigen D. nodosus vaccine (serogroups A-I) is, in part, under genetic control and thus heritable. Based on the genetic relationships between antibody responses to all nine antigens, results suggested that both genes for a broad-based and genes for serogroup-specific response contributed to genetic variation in vaccine response. Furthermore, preliminary data in 389 progeny showed that polymorphism within the ovine major histocompatibility (MHC) based on serological classification accounted for a significant proportion of the variation in vaccine responses. In subsequent experimentation, we examined the importance of genetic polymorphism within the ovine MHC, and the possibility of genes outside the MHC for their involvement in antigen-specific and broad-based vaccine response. Within two large half sib families(131, and 143 progeny), four MHC haplotypes were investigated and found to be associated with differential antibody responses to six out of eight distinct vaccine-antigens presented to the host in a multi-valent vaccine. The model used here shows how well characterised immunogens, quantitative genetic experimentation, and molecular gene mapping tools can be used to unravel genetic differences in host responses to commercial vaccines.

UI MeSH Term Description Entries
D008297 Male Males
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D005260 Female Females
D005535 Foot Rot A disease of the horny parts and of the adjacent soft structures of the feet of cattle, swine, and sheep. It is usually caused by Corynebacterium pyogenes or Bacteroides nodosus (see DICHELOBACTER NODOSUS). It is also known as interdigital necrobacillosis. (From Black's Veterinary Dictionary, 18th ed) Foot Rots,Rot, Foot,Rots, Foot
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D006239 Haplotypes The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX. Haplotype
D000372 Agglutination Tests Tests that are dependent on the clumping of cells, microorganisms, or particles when mixed with specific antiserum. (From Stedman, 26th ed) Agglutination Test,Test, Agglutination,Tests, Agglutination
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000907 Antibodies, Bacterial Immunoglobulins produced in a response to BACTERIAL ANTIGENS. Bacterial Antibodies
D001428 Bacterial Vaccines Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease. Bacterial Vaccine,Bacterin,Vaccine, Bacterial,Vaccines, Bacterial

Related Publications

H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
April 2013, Veterinary microbiology,
H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
March 1994, Veterinary immunology and immunopathology,
H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
March 2022, Animals : an open access journal from MDPI,
H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
December 1996, Australian veterinary journal,
H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
April 2021, Animals : an open access journal from MDPI,
H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
May 2021, Animals : an open access journal from MDPI,
H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
July 1998, Veterinary microbiology,
H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
June 2022, Scientific reports,
H W Raadsma, and J C McEwan, and M J Stear, and A M Crawford
April 1985, Australian veterinary journal,
Copied contents to your clipboard!