Effect of docosahexaenoic acid supplementation of lactating women on the fatty acid composition of breast milk lipids and maternal and infant plasma phospholipids. 2000

C L Jensen, and M Maude, and R E Anderson, and W C Heird
Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA. cjensen@bcm.tmc.edu

To determine whether docosahexaenoic acid (DHA) supplementation of breast-feeding mothers increases the DHA contents of breast milk and infant plasma phospholipids (PPs), breast-feeding women were randomly assigned to 3 DHA-supplementation groups (170-260 mg/d) or a control group. Group 1 (n = 6) consumed an algae-produced high-DHA triacylglycerol; group 2 (n = 6) consumed high-DHA eggs; group 3 (n = 6) consumed a high-DHA, low-eicosapentaenoic acid marine oil; and group 4 (n = 6) received no supplementation. From before to after supplementation (2 and 8 wk postpartum), mean (+/-SD) maternal PP DHA increased in groups 1, 2, and 3 by 1.20 +/- 0.53, 0.63 +/- 0.82, and 0.76 +/- 0.35 mol% of fatty acids, respectively (23-41%), but decreased in group 4 by 0.44 +/- 0.34 mol% (15%). Breast-milk DHA of groups 1, 2, and 3 increased by 0.21 +/- 0.16, 0.07 +/- 0.11, and 0. 12 +/- 0.07 mol%, respectively (32-91%) but decreased in group 4 by 0.03 +/- 0.04 mol% (17%). Mean infant PP DHA in groups 1, 2, and 3 increased by 1.63 +/- 0.79, 0.40 +/- 1.0, and 0.98 +/- 0.61 mol%, respectively (11-42%), but only by 0.18 +/- 0.74 mol% (5%) in group 4. Correlations between the DHA contents of maternal plasma and breast milk and of milk and infant PPs were significant. Breast-milk and maternal and infant PP 22:5n-6 concentrations were lowest in group 2. DHA supplementation increases the plasma and breast-milk DHA concentrations of lactating women, resulting in higher PP DHA concentrations in infants.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008895 Milk, Human Milk that is produced by HUMAN MAMMARY GLANDS. Breast Milk,Human Milk,Milk, Breast
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001942 Breast Feeding The nursing of an infant at the breast. Breast Fed,Breastfed,Milk Sharing,Wet Nursing,Breast Feeding, Exclusive,Breastfeeding,Breastfeeding, Exclusive,Exclusive Breast Feeding,Exclusive Breastfeeding,Sharing, Milk
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004281 Docosahexaenoic Acids C22-unsaturated fatty acids found predominantly in FISH OILS. Docosahexaenoate,Docosahexaenoic Acid,Docosahexenoic Acids,Docosahexaenoic Acid (All-Z Isomer),Docosahexaenoic Acid Dimer (All-Z Isomer),Docosahexaenoic Acid, 3,6,9,12,15,18-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cerium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cesium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Potassium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(Z,Z,Z,Z,Z,E-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer, Sodium Salt,Docosahexaenoic Acid, Sodium Salt,Acid, Docosahexaenoic,Acids, Docosahexaenoic,Acids, Docosahexenoic
D004531 Eggs Animal reproductive bodies, or the contents thereof, used as food. The concept is differentiated from OVUM, the anatomic or physiologic entity.
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids

Related Publications

C L Jensen, and M Maude, and R E Anderson, and W C Heird
April 2015, Prostaglandins, leukotrienes, and essential fatty acids,
C L Jensen, and M Maude, and R E Anderson, and W C Heird
June 1996, European journal of clinical nutrition,
C L Jensen, and M Maude, and R E Anderson, and W C Heird
February 2012, International journal of food sciences and nutrition,
C L Jensen, and M Maude, and R E Anderson, and W C Heird
February 2000, Pediatrics international : official journal of the Japan Pediatric Society,
C L Jensen, and M Maude, and R E Anderson, and W C Heird
September 2001, Prostaglandins, leukotrienes, and essential fatty acids,
C L Jensen, and M Maude, and R E Anderson, and W C Heird
December 2000, Early human development,
C L Jensen, and M Maude, and R E Anderson, and W C Heird
November 1998, European journal of clinical nutrition,
C L Jensen, and M Maude, and R E Anderson, and W C Heird
January 1972, Journal of dairy science,
Copied contents to your clipboard!