Role of protein kinase C in angiotensin II-induced constriction of renal microvessels. 2000

T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.

Role of protein kinase C in angiotensin II-induced constriction of renal microvessels. BACKGROUND Although angiotensin II (Ang II) exerts its action through multiple vasomotor mechanisms, the contribution of phosphoinositol hydrolysis products to Ang II-induced renal vasoconstriction remains undetermined. METHODS The role of protein kinase C (PKC) in Ang II-induced afferent (AFF) and efferent (EFF) arteriolar constriction was examined using the isolated perfused hydronephrotic rat kidney. RESULTS Ang II (0.3 nmol/L)-induced EFF constriction was refractory to inhibition of voltage-dependent calcium channels by pranidipine (1 micromol/L, 19 +/- 2% reversal) but was completely reversed by a PKC inhibitor, chelerythrine (1 micromol/L, 96 +/- 2% reversal). Furthermore, direct PKC activation by phorbol myristate acetate (PMA; 1 micromol/L) caused prominent EFF constriction, and this constriction was inhibited by manganese and free calcium medium. In contrast, Ang II-induced AFF constriction was completely abolished by pranidipine (98 +/- 4% reversal) and was partially inhibited by chelerythrine (55 +/- 3% reversal). Although PMA elicited marked AFF constriction, this constriction was insensitive to the calcium antagonist, but was totally inhibited by manganese or free calcium medium. CONCLUSIONS PKC plays an obligatory role in Ang II-induced EFF constriction that requires extracellular calcium entry through nonselective cation channels. In contrast, in concert with our recent findings demonstrating a complete dilation by thapsigargin, Ang II-induced AFF constriction is mainly mediated by inositol trisphosphate (IP3) and voltage-dependent calcium channel pathways, but could not be attributed to the PKC-activated calcium entry pathway (for example, nonselective cation channels). Rather, Ang II-stimulated PKC may cross-talk to the IP3/voltage-dependent calcium channel pathway and could modulate the vasoconstrictor mechanism of the AFF. Thus, the role of PKC during Ang II stimulation differs in AFF and EFF, which may constitute segmental heterogeneity in the renal microvasculature.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer

Related Publications

T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
June 1996, The American journal of physiology,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
January 2014, The Keio journal of medicine,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
September 1990, The American journal of physiology,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
September 2009, Biochemical and biophysical research communications,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
May 1988, Biochimica et biophysica acta,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
August 2016, Biochemical and biophysical research communications,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
May 2017, American journal of physiology. Renal physiology,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
January 1996, Contributions to nephrology,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
January 1991, Contributions to nephrology,
T Nagahama, and K Hayashi, and Y Ozawa, and T Takenaka, and T Saruta
December 1993, Molecular and chemical neuropathology,
Copied contents to your clipboard!