Movement-related glutamate levels in rat hippocampus, striatum, and sensorimotor cortex. 1999

S T Bland, and R A Gonzales, and T Schallert
Department of Psychology, University of Texas, Austin 78712, USA. sbland@mail.utexas.edu

Changes in brain extracellular glutamate during movement stress were studied using in vivo microdialysis. Male Long-Evans rats were placed in a clear cylinder designed to elicit behavioral activation while undergoing microdialysis sampling from either the hippocampus, striatum or sensorimotor cortex. Glutamate levels were determined by high performance liquid chromatography with fluorescence detection in the dialysates taken before, during, and after exposure to the cylinder. Animals were in a behaviorally quiescent state before exposure to the cylinder, but they demonstrated increases in rearing, locomotion, and turning while in the cylinder. Dialysate glutamate levels were significantly enhanced in the samples taken while the rat was in the cylinder compared with samples taken before or after exposure to the cylinder. In a second study, rats were implanted with bilateral probes in the forelimb sensorimotor cortex, and one forelimb was immobilized by means of a plaster of paris cast. Glutamate, aspartate, serine, and taurine levels were quantified in casted animals. In casted animals, dialysate glutamate levels were lower on the side contralateral to the immobilized limb during both quiescence and movement stress. Aspartate and taurine, but not serine levels increased during movement stress in both the side contralateral and the side ipsilateral to the immobilized limb. These results suggest that there is extracellular overflow of glutamate and other neuroactive amino acids during spontaneous movement, and chronic disuse can suppress extracellular glutamate levels.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum
D020318 Rats, Long-Evans An outbred strain of rats developed in 1915 by crossing several Wistar Institute white females with a wild gray male. Inbred strains have been derived from this original outbred strain, including Long-Evans cinnamon rats (RATS, INBRED LEC) and Otsuka-Long-Evans-Tokushima Fatty rats (RATS, INBRED OLETF), which are models for Wilson's disease and non-insulin dependent diabetes mellitus, respectively. Long-Evans Rat,Long Evans Rats,Evans Rats, Long,Long Evans Rat,Long-Evans Rats,Rat, Long-Evans,Rats, Long Evans

Related Publications

S T Bland, and R A Gonzales, and T Schallert
November 2017, Biochemical and biophysical research communications,
S T Bland, and R A Gonzales, and T Schallert
October 2008, Annals of the New York Academy of Sciences,
S T Bland, and R A Gonzales, and T Schallert
May 2000, Phytotherapy research : PTR,
S T Bland, and R A Gonzales, and T Schallert
March 2003, Journal of neurophysiology,
S T Bland, and R A Gonzales, and T Schallert
August 1993, The Journal of comparative neurology,
S T Bland, and R A Gonzales, and T Schallert
March 1981, Life sciences,
S T Bland, and R A Gonzales, and T Schallert
October 2018, Experimental gerontology,
S T Bland, and R A Gonzales, and T Schallert
January 2001, Brain research,
S T Bland, and R A Gonzales, and T Schallert
January 2000, Neurobiology of aging,
Copied contents to your clipboard!