TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis. 2000

A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
Department of Anatomy, College of Physicians and Surgeons, New York, New York, 10032, USA.

The mechanism of animal-vegetal (AV) axis formation in the sea urchin embryo is incompletely understood. Specification of the axis is thought to involve a combination of cell-cell signals and as yet unidentified maternal determinants. In Xenopus the Wnt pathway plays a crucial role in defining the embryonic axes. Recent experiments in sea urchins have shown that at least two components of the Wnt signaling pathway, GSK3beta and beta-catenin, are involved in embryonic AV axis patterning. These results support the notion that the developmental network that regulates axial patterning in deuterostomes is evolutionarily conserved. To further test this hypothesis, we have examined the role of beta-catenin nuclear binding partners, members of the TCF family of transcriptional regulators, in sea urchin AV axis patterning. To test the role of TCFs in mediating beta-catenin signals in sea urchin AV axis development we examined the consequences of microinjecting RNAs encoding altered forms of TCF on sea urchin development. We show that expression of a dominant negative TCF results in a classic "animalized" embryo. In contrast, microinjected RNA encoding an activated TCF produces a highly "vegetalized" embryo. We show that the transactivational activity of endogenous sea urchin TCF is potentiated by LiCl treatment, which vegetalizes embryos by inhibiting GSK3, consistent with an in vivo interaction between endogenous beta-catenin and TCF. We also provide evidence indicating that all of beta-catenin's activity in patterning the sea urchin AV axis is mediated by TCF. Using a glucocorticoid-responsive TCF, we show that TCF transcriptional activity affects specification along the AV axis between fertilization and the 60-cell stage.

UI MeSH Term Description Entries
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
August 1998, Proceedings of the National Academy of Sciences of the United States of America,
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
January 1999, Development (Cambridge, England),
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
June 2004, Development (Cambridge, England),
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
January 2002, International review of cytology,
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
February 1997, The Biological bulletin,
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
February 2000, Developmental biology,
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
September 1995, Developmental biology,
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
July 1998, Development (Cambridge, England),
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
February 2000, Development genes and evolution,
A Vonica, and W Weng, and B M Gumbiner, and J M Venuti
April 1999, Development (Cambridge, England),
Copied contents to your clipboard!