The feedback response of Escherichia coli rRNA synthesis is not identical to the mechanism of growth rate-dependent control. 2000

J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

Growth rate-independent rrn P1 promoter mutants were tested for their ability to respond to changes in rrn gene dosage. Most were found to be normal for the feedback response. In addition, cellular levels of the initiating nucleoside triphosphates remained unchanged when the rrn gene dosage was altered. These results suggest that the feedback response cannot be the mechanism for growth rate-dependent control of rRNA synthesis and that the relationship between these two processes may be more complicated than is currently understood.

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D018628 Gene Dosage The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage. Gene Copy Number,Copy Number, Gene,Copy Numbers, Gene,Dosage, Gene,Dosages, Gene,Gene Copy Numbers,Gene Dosages,Number, Gene Copy,Numbers, Gene Copy

Related Publications

J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
July 1990, Proceedings of the National Academy of Sciences of the United States of America,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
January 1996, Annual review of microbiology,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
January 1986, Cell,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
April 2008, Journal of bacteriology,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
September 2006, Biochimie,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
August 1988, European journal of biochemistry,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
April 1998, Journal of bacteriology,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
January 1990, Journal of bacteriology,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
January 1985, Molecular & general genetics : MGG,
J Voulgaris, and D Pokholok, and W M Holmes, and C Squires, and C L Squires
March 1981, Journal of bacteriology,
Copied contents to your clipboard!