Synthesis of tacrine analogues and their structure-activity relationships. 2000

G R Proctor, and A L Harvey
Department of Pure and Applied Chemistry and Strathclyde Institute for Drug Research, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK.

Three man synthetic routes to analogues of tacrine are described: reaction of anthranilonitriles with cyclohexanone and other ketones, reaction of various anilines with alpha-cyanoketones, and reactions involving anilines and cyclic beta-ketoesters. Although tacrine has a wide range of pharmacological effects, it is best known as an inhibitor of cholinesterase enzymes. Many of the analogues that have been made have not been tested against acetylcholinesterase or butyrylcholinesterase activity. Consequently, there is limited information from which a detailed understanding of structure-activity relationships can be derived. However, some halogenated derivatives are not only more potent acetylcholinesterase inhibitors than tacrine, they are also more selective for acetylcholinesterase than for butyrylcholinesterase.

UI MeSH Term Description Entries
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D002091 Butyrylcholinesterase An aspect of cholinesterase (EC 3.1.1.8). Pseudocholinesterase,Benzoylcholinesterase,Butyrylthiocholinesterase
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D003489 Cyanoketone 2 alpha-Cyano-17 beta-hydroxy-4,4',17 alpha-trimethylandrost-5-ene-3-one. An androstenolone-nitrile compound with steroidogenesis-blocking activity.
D003512 Cyclohexanones Cyclohexane ring substituted by one or more ketones in any position.
D004952 Esters Compounds derived from organic or inorganic acids in which at least one hydroxyl group is replaced by an –O-alkyl or another organic group. They can be represented by the structure formula RCOOR’ and are usually formed by the reaction between an acid and an alcohol with elimination of water. Ester
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000814 Aniline Compounds Compounds that include the aminobenzene structure. Phenylamine,Phenylamines,Anilines,Compounds, Aniline
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013619 Tacrine A cholinesterase inhibitor that crosses the blood-brain barrier. Tacrine has been used to counter the effects of muscle relaxants, as a respiratory stimulant, and in the treatment of Alzheimer's disease and other central nervous system disorders. Tetrahydroaminoacridine,1,2,3,4-Tetrahydro-9-acridinamine,1,2,3,4-Tetrahydroaminoacridine,9-Amino-1,2,3,4-Tetrahydroacridine,Cognex,Romotal,THA,Tacrine Hydrochloride,Tenakrin

Related Publications

G R Proctor, and A L Harvey
August 2008, The open medicinal chemistry journal,
G R Proctor, and A L Harvey
January 1997, Journal of medicinal chemistry,
G R Proctor, and A L Harvey
May 1991, Journal of medicinal chemistry,
G R Proctor, and A L Harvey
November 1993, Journal of pharmaceutical sciences,
G R Proctor, and A L Harvey
January 2000, Bioorganic & medicinal chemistry letters,
G R Proctor, and A L Harvey
April 2010, Bioorganic & medicinal chemistry letters,
G R Proctor, and A L Harvey
September 1990, Journal of medicinal chemistry,
G R Proctor, and A L Harvey
December 2006, Journal of medicinal chemistry,
G R Proctor, and A L Harvey
March 2007, Journal of microbiology and biotechnology,
G R Proctor, and A L Harvey
August 1997, Journal of medicinal chemistry,
Copied contents to your clipboard!