Invasive potential and substrate dependence of attachment in the dunning R-3327 rat prostate adenocarcinoma model. 1998

C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA.

Cancer cell attachment to and invasion of the extracellular matrix has been associated with the metastatic potential of cell lines of the Dunning R-3327 rat prostatic adenocarcinoma model. We investigated the cell-matrix interactions of prostate tumor cells by comparing the invasive ability through reconstructed extracellular matrix and attachment upon EHS NATRIX (natural extracellular matrix), fibronectin, laminin, and collagen Type IV. We observed a correlation between metastatic potential and substrate dependence of attachment in prostate cancer cells. Nonmetastatic AT-1 cells possessed a higher adhesive potential to extracellular matrix components than the highly metastatic cells (ML, MLL and AT-3). It was also found that the invasive potential of the three highly metastatic cell lines was significantly higher than that of the nonmetastatic cell line. Here, it is reported that the ability to traverse a matrigel matrix correlates with their metastatic potential. These observations suggest that the extracellular matrix components are highly involved in influencing prostate cancer cell activities. In addition, we investigated the effects of two differentiation agents, retinoic acid (RA) and difluoromethylornithine (DFMO), on the adhesive and invasive profiles of the tumor cells. After treatment with both agents, adhesion was increased to levels not different from nonmetastatic cells. Furthermore, the ability of highly metastatic cells to traverse a matrigel barrier was significantly reduced after treatment with both differentiation agents. These results suggest that RA and DFMO are capable in reversing the metastatic potential of prostate cancer cells in vitro and may give a possible insight into their role as potential therapeutic agents in vivo.

UI MeSH Term Description Entries
D008297 Male Males
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D000518 Eflornithine An inhibitor of ORNITHINE DECARBOXYLASE, the rate limiting enzyme of the polyamine biosynthetic pathway. Difluoromethylornithine,alpha-Difluoromethylornithine,DL-alpha-Difluoromethylornithine,Eflornithine Hydrochloride,Eflornithine Monohydrochloride, Monohydrate,MDL-71,782 A,Ornidyl,RMI 71782,Vaniqa,alpha-Difluoromethyl Ornithine,DL alpha Difluoromethylornithine,MDL 71,782 A,MDL71,782 A,Ornithine, alpha-Difluoromethyl,alpha Difluoromethyl Ornithine,alpha Difluoromethylornithine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid

Related Publications

C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
December 1991, Cancer research,
C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
January 1996, Cancer letters,
C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
March 1987, The Journal of urology,
C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
July 1985, American journal of reproductive immunology and microbiology : AJRIM,
C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
March 1992, The Journal of urology,
C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
April 1983, Journal of surgical oncology,
C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
September 1978, Cancer research,
C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
February 1990, Cancer research,
C D Donald, and D E Montgomery, and N Emmett, and D B Cooke
January 1981, Urological research,
Copied contents to your clipboard!