Orthodontic elastic materials. 1976

A K Wong

Latex elastics and synthetic elastomers have certain similarities and differences. In the fracture tests the latex elastics showed a greater amount of loss in strength than plastic elastomers when stretched over a 21 day period. There is a great variability, as much as 50%, in the tensile strength of the plastic materials taken from the same batch and stretched under the same conditions. The Ormco Power Chain was more resilient than the Unitek AlastiK chain. The Unitek AlastiKs had more force and stretched less. The force decay of synthetic elastomers, stretched over a specific length and time, exhibited a great loss in force. This loss could be as great as 73% during the first day. The decay of force continued at a slower rate during the rest of the 21 day period. Unitek AlastiK C2 double links, when stretched 17 millimeters, had a higher initial force averaging 641 grams (22.5 ounces) than the Ormco Power Chain which averages 342 grams (12.0 ounces). In one day the force was reduced to 171 grams (6.0 ounces) for both materials. The elastic materials within the same batch showed a great variation in the modulus of elasticity under different test conditions. The approximate force generated when stretched dry, within the elastic limit, was 22 grams per millimeter for 3/16 inches heavy latex elastics. The Unitek AlastiK C2 gave a force of 89 grams per millimeter, while the Ormco Power Chain had a value of 46 grams per millimeter. The modulus of elasticity of all of the materials was much lower after immersion in the water bath. The force decay under constant force application to latex, elastic, polymer chains, and tied loops showed that the greatest amount of force decay occurred during the first three hours in the water bath. The forces remained relatively the same throughout the rest of the test period. The elastic materials undergo permanent deformation in shape. The synthetic elastomers exhibited plastic deformation when the elastomers were stretched 17 millimeters for 21 days. In the dry condition the force decay was 63% for the Unitek chains and 42% for the Ormco Power Chain. The synthetic elastomers should be prestretched before being placed in the mouth. The elastomers should be used within their resilient ranges. Clinical treatment procedures should take into consideration the rapid initial force decay of elastic materials that occurs during the first day and the residual forces remaining.

UI MeSH Term Description Entries
D009967 Orthodontic Appliances Devices used for influencing tooth position. Orthodontic appliances may be classified as fixed or removable, active or retaining, and intraoral or extraoral. (Boucher's Clinical Dental Terminology, 4th ed, p19) Appliance, Orthodontic,Appliances, Orthodontic,Orthodontic Appliance
D011140 Polyurethanes A group of thermoplastic or thermosetting polymers containing polyisocyanate. They are used as ELASTOMERS, as coatings, as fibers and as foams. Polyisocyanates,Ostamer,Pellethane,Spandex,Ostamers,Pellethanes,Polyisocyanate,Polyurethane,Spandices
D004548 Elasticity Resistance and recovery from distortion of shape.
D012408 Rubber A high-molecular-weight polymeric elastomer derived from the milk juice (LATEX) of HEVEA brasiliensis and other trees and plants. It is a substance that can be stretched at room temperature to at least twice its original length and after releasing the stress, retract rapidly, and recover its original dimensions fully. Latex Rubber,Elastica,India Rubber,Natural Rubber,Plant Rubber,Vulcanite,Natural Rubbers,Plant Rubbers,Rubber, Natural,Rubber, Plant,Rubbers, Natural,Rubbers, Plant
D012826 Silicone Elastomers Polymers of silicone that are formed by crosslinking and treatment with amorphous silica to increase strength. They have properties similar to vulcanized natural rubber, in that they stretch under tension, retract rapidly, and fully recover to their original dimensions upon release. They are used in the encapsulation of surgical membranes and implants. Elastomers, Silicone,Rubber Silicone,Silicone Rubber,Elastosil,Microfil,SE-30,Elastosils,Microfils,SE 30,SE30,Silicone Elastomer
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical

Related Publications

A K Wong
January 1990, Informationen aus Orthodontie und Kieferorthopadie : mit Beitragen aus der internationalen Literatur,
A K Wong
March 1977, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik,
A K Wong
January 1970, Schweizerische Monatsschrift fur Zahnheilkunde = Revue mensuelle suisse d'odonto-stomatologie,
A K Wong
January 1971, Dental clinics of North America,
A K Wong
November 1970, Fogorvosi szemle,
A K Wong
August 1974, Das Dental-Labor. Le Laboratoire dentaire. The Dental laboratory,
A K Wong
October 1978, Journal of the American Dental Association (1939),
A K Wong
November 1997, Journal of the American Dental Association (1939),
A K Wong
May 1983, European journal of orthodontics,
Copied contents to your clipboard!