Scalp topography of the auditory evoked K-complex in stage 2 and slow wave sleep. 1999

K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
School of Psychology, University of Ottawa, Canada.

During NREM sleep a very large amplitude wave-form, known as the K-complex, may be elicited upon presentation of an external stimulus. The present study compared the scalp distribution of a prominent negative wave peaking at about 550 ms and a later positive wave peaking between 900 and 1300 ms in stage 2 and slow wave sleep (SWS). Nine subjects spent a single night in the laboratory. They were presented with an 80 dB SPL 2000 Hz auditory tone pip every 15 s. The EEG was recorded from 29 electrode sites and referenced to the nose. A K-complex was elicited on 34% of trials in stage 2 and on 46% of trials in SWS. A negative wave peaking at 330 ms was larger on trials in which the K-complex was elicited than on trials in which it was not. The large amplitude N550 was readily observable on trials in which the K-complex was elicited but could not be observed on trials in which it was not. The N550 was bilaterally symmetrical and was maximum over fronto-central areas of the scalp in both stage 2 and SWS. It inverted in polarity at the mastoid and inferior parietal regions. The scalp distribution of N550 significantly differed between stage 2 and SWS. It showed a sharper decline in amplitude over parietal and posterior-inferior areas of the scalp in stage 2 compared to SWS. A later P900 was maximum over centro-frontal areas of the scalp and was also bilaterally symmetrical. It showed a significantly sharper decline in amplitude over widespread inferior areas during SWS. Because the scalp maps of the N550 and P900 are different in stage 2 and SWS, their intracranial sources must also be different.

UI MeSH Term Description Entries
D008297 Male Males
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D005260 Female Females
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
July 1980, No to shinkei = Brain and nerve,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
August 2006, Neuroscience letters,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
January 2016, PloS one,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
January 1977, Electroencephalography and clinical neurophysiology,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
January 2002, Brain topography,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
April 1997, Electroencephalography and clinical neurophysiology,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
January 1989, Seishin shinkeigaku zasshi = Psychiatria et neurologia Japonica,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
September 1973, Electroencephalography and clinical neurophysiology,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
April 2024, Scientific reports,
K A Cote, and D R de Lugt, and S D Langley, and K B Campbell
January 1993, Brain and language,
Copied contents to your clipboard!