Caenorhabditis elegans UNC-45 is a component of muscle thick filaments and colocalizes with myosin heavy chain B, but not myosin heavy chain A. 2000

W Ao, and D Pilgrim
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.

In the nematode Caenorhabditis elegans, animals mutant in the gene encoding the protein product of the unc-45 gene (UNC-45) have disorganized muscle thick filaments in body wall muscles. Although UNC-45 contains tetratricopeptide repeats (TPR) as well as limited similarity to fungal proteins, no biochemical role has yet been found. UNC-45 reporters are expressed exclusively in muscle cells, and a functional reporter fusion is localized in the body wall muscles in a pattern identical to thick filament A-bands. UNC-45 colocalizes with myosin heavy chain (MHC) B in wild-type worms as well as in temperature-sensitive (ts) unc-45 mutants, but not in a mutant in which MHC B is absent. Surprisingly, UNC-45 localization is also not seen in MHC B mutants, in which the level of MHC A is increased, resulting in near-normal muscle thick filament structure. Thus, filament assembly can be independent of UNC-45. UNC-45 shows a localization pattern identical to and dependent on MHC B and a function that appears to be MHC B-dependent. We propose that UNC-45 is a peripheral component of muscle thick filaments due to its localization with MHC B. The role of UNC-45 in thick filament assembly seems restricted to a cofactor for assembly or stabilization of MHC B.

UI MeSH Term Description Entries
D008164 Luminescent Proteins Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors. Bioluminescent Protein,Bioluminescent Proteins,Luminescent Protein,Photoprotein,Photoproteins,Protein, Bioluminescent,Protein, Luminescent,Proteins, Bioluminescent,Proteins, Luminescent
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015801 Helminth Proteins Proteins found in any species of helminth. Helminth Protein,Protein, Helminth,Proteins, Helminth
D017173 Caenorhabditis elegans A species of nematode that is widely used in biological, biochemical, and genetic studies. Caenorhabditis elegan,elegan, Caenorhabditis

Related Publications

W Ao, and D Pilgrim
July 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!