Glucocerebrosidase gene mutations in patients with type 2 Gaucher disease. 2000

D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
Clinical Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-4405, USA.

Gaucher disease, the most common lysosomal storage disorder, results from the inherited deficiency of the enzyme glucocerebrosidase. Three clinical types are recognized: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. Type 2 Gaucher disease, the rarest type, is progressive and fatal. We have performed molecular analyses of a cohort of 31 patients with type 2 Gaucher disease. The cases studied included fetuses presenting prenatally with hydrops fetalis, infants with the collodion baby phenotype, and infants diagnosed after several months of life. All 62 mutant glucocerebrosidase (GBA) alleles were identified. Thirty-three different mutant alleles were found, including point mutations, splice junction mutations, deletions, fusion alleles and recombinant alleles. Eleven novel mutations were identified in these patients: R131L, H255Q, R285H, S196P, H311R, c.330delA, V398F, F259L, c.533delC, Y304C and A190E. Mutation L444P was found on 25 patient alleles. Southern blots and direct sequencing demonstrated that mutation L444P occurred alone on 9 alleles, with E326K on one allele and as part of a recombinant allele on 15 alleles. There were no homozygotes for point mutation L444P. The recombinant alleles that included L444P resulted from either reciprocal recombination or gene conversion with the nearby glucocerebrosidase pseudogene, and seven different sites of recombination were identified. Homozygosity for a recombinant allele was associated with early lethality. We have also summarized the literature describing mutations associated with type 2 disease, and list 50 different mutations. This report constitutes the most comprehensive molecular study to date of type 2 Gaucher disease, and it demonstrates that there is significant phenotypic and genotypic heterogeneity among patients with type 2 Gaucher disease. Hum Mutat 15:181-188, 2000. Published 2000 Wiley-Liss, Inc.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011544 Pseudogenes Genes bearing close resemblance to known genes at different loci, but rendered non-functional by additions or deletions in structure that prevent normal transcription or translation. When lacking introns and containing a poly-A segment near the downstream end (as a result of reverse copying from processed nuclear RNA into double-stranded DNA), they are called processed genes. Genes, Processed,beta-Tubulin Pseudogene,Gene, Processed,Processed Gene,Processed Genes,Pseudogene,Pseudogene, beta-Tubulin,Pseudogenes, beta-Tubulin,beta Tubulin Pseudogene,beta-Tubulin Pseudogenes
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D005006 Ethnicity A group of people with a common cultural heritage that sets them apart from others in a variety of social relationships. Ethnic Groups,Nationality,Ethnic Group,Nationalities
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005776 Gaucher Disease An autosomal recessive disorder caused by a deficiency of acid beta-glucosidase (GLUCOSYLCERAMIDASE) leading to intralysosomal accumulation of glycosylceramide mainly in cells of the MONONUCLEAR PHAGOCYTE SYSTEM. The characteristic Gaucher cells, glycosphingolipid-filled HISTIOCYTES, displace normal cells in BONE MARROW and visceral organs causing skeletal deterioration, hepatosplenomegaly, and organ dysfunction. There are several subtypes based on the presence and severity of neurological involvement. Cerebroside Lipidosis Syndrome,Gaucher Disease Type 1,Gaucher Disease Type 2,Glucocerebrosidase Deficiency Disease,Glucosylceramide Beta-Glucosidase Deficiency Disease,Neuronopathic Gaucher Disease,Acid beta-Glucosidase Deficiency,Acid beta-Glucosidase Deficiency Disease,Acute Neuronopathic Gaucher Disease,Chronic Gaucher Disease,GBA Deficiency,Gaucher Disease Type 3,Gaucher Disease, Acute Neuronopathic,Gaucher Disease, Acute Neuronopathic Type,Gaucher Disease, Chronic,Gaucher Disease, Chronic Neuronopathic Type,Gaucher Disease, Infantile,Gaucher Disease, Infantile Cerebral,Gaucher Disease, Juvenile,Gaucher Disease, Juvenile and Adult, Cerebral,Gaucher Disease, Neuronopathic,Gaucher Disease, Non-Neuronopathic Form,Gaucher Disease, Noncerebral Juvenile,Gaucher Disease, Subacute Neuronopathic Form,Gaucher Disease, Subacute Neuronopathic Type,Gaucher Disease, Type 1,Gaucher Disease, Type 2,Gaucher Disease, Type 3,Gaucher Disease, Type I,Gaucher Disease, Type II,Gaucher Disease, Type III,Gaucher Splenomegaly,Gaucher Syndrome,Gaucher's Disease,Gauchers Disease,Glucocerebrosidase Deficiency,Glucocerebrosidosis,Glucosyl Cerebroside Lipidosis,Glucosylceramidase Deficiency,Glucosylceramide Beta-Glucosidase Deficiency,Glucosylceramide Lipidosis,Infantile Gaucher Disease,Kerasin Histiocytosis,Kerasin Lipoidosis,Kerasin thesaurismosis,Lipoid Histiocytosis (Kerasin Type),Non-Neuronopathic Gaucher Disease,Subacute Neuronopathic Gaucher Disease,Type 1 Gaucher Disease,Type 2 Gaucher Disease,Type 3 Gaucher Disease,Cerebroside Lipidoses, Glucosyl,Cerebroside Lipidosis Syndromes,Cerebroside Lipidosis, Glucosyl,Deficiencies, GBA,Deficiencies, Glucocerebrosidase,Deficiency Disease, Glucocerebrosidase,Deficiency Diseases, Glucocerebrosidase,Deficiency, GBA,Deficiency, Glucocerebrosidase,Disease, Chronic Gaucher,Disease, Gaucher,Disease, Gaucher's,Disease, Gauchers,Disease, Glucocerebrosidase Deficiency,Disease, Infantile Gaucher,Disease, Juvenile Gaucher,Disease, Neuronopathic Gaucher,Disease, Non-Neuronopathic Gaucher,Diseases, Gauchers,Diseases, Glucocerebrosidase Deficiency,GBA Deficiencies,Gaucher Disease, Non Neuronopathic Form,Gaucher Disease, Non-Neuronopathic,Gauchers Diseases,Glucocerebrosidase Deficiencies,Glucocerebrosidase Deficiency Diseases,Glucocerebrosidoses,Glucosyl Cerebroside Lipidoses,Glucosylceramide Lipidoses,Histiocytoses, Kerasin,Histiocytoses, Lipoid (Kerasin Type),Histiocytosis, Kerasin,Histiocytosis, Lipoid (Kerasin Type),Juvenile Gaucher Disease,Kerasin Histiocytoses,Kerasin Lipoidoses,Kerasin thesaurismoses,Lipidoses, Glucosyl Cerebroside,Lipidoses, Glucosylceramide,Lipidosis Syndrome, Cerebroside,Lipidosis Syndromes, Cerebroside,Lipidosis, Glucosyl Cerebroside,Lipidosis, Glucosylceramide,Lipoid Histiocytoses (Kerasin Type),Lipoidoses, Kerasin,Lipoidosis, Kerasin,Non Neuronopathic Gaucher Disease,Splenomegaly, Gaucher,Syndrome, Cerebroside Lipidosis,Syndrome, Gaucher,Syndromes, Cerebroside Lipidosis,thesaurismoses, Kerasin,thesaurismosis, Kerasin
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D005962 Glucosylceramidase A glycosidase that hydrolyzes a glucosylceramide to yield free ceramide plus glucose. Deficiency of this enzyme leads to abnormally high concentrations of glucosylceramide in the brain in GAUCHER DISEASE. EC 3.2.1.45. Glucocerebrosidase,Acid beta-Glucosidase,Glucocerebroside beta-Glucosidase,Glucosyl Ceramidase,Glucosylceramide beta-Glucosidase,Glucosylsphingosine Glucosyl Hydrolase,beta-Glucocerebrosidase,Acid beta Glucosidase,Ceramidase, Glucosyl,Glucocerebroside beta Glucosidase,Glucosyl Hydrolase, Glucosylsphingosine,Glucosylceramide beta Glucosidase,Hydrolase, Glucosylsphingosine Glucosyl,beta Glucocerebrosidase,beta-Glucosidase, Acid,beta-Glucosidase, Glucocerebroside,beta-Glucosidase, Glucosylceramide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
April 2014, Proceedings of the National Academy of Sciences of the United States of America,
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
January 2021, Iranian journal of child neurology,
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
January 2013, JIMD reports,
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
April 2014, Journal of human genetics,
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
May 2015, Journal of human genetics,
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
November 1994, Molecular medicine (Cambridge, Mass.),
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
January 2009, Blood cells, molecules & diseases,
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
December 2017, American journal of medical genetics. Part A,
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
January 2008, European journal of medical genetics,
D L Stone, and N Tayebi, and E Orvisky, and B Stubblefield, and V Madike, and E Sidransky
April 2002, Human mutation,
Copied contents to your clipboard!