Signal transduction from the angiotensin II AT2 receptor. 2000

S Nouet, and C Nahmias
CNRS UPR415, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, 75014 Paris, France.

Recent studies of genetically engineered animals have established a role for the angiotensin II (AT2) receptor in cardiovascular, renal and central functions, as well as in developmental processes. This review summarizes new insights into major AT2 signaling pathways--activation of protein phosphatases, the nitric oxide-cGMP system and phospholipase A2--which have been related to specific cellular responses or functions of this receptor.

UI MeSH Term Description Entries
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D044139 Receptor, Angiotensin, Type 2 An angiotensin receptor subtype that is expressed at high levels in fetal tissues. Many effects of the angiotensin type 2 receptor such as VASODILATION and sodium loss are the opposite of that of the ANGIOTENSIN TYPE 1 RECEPTOR. Angiotensin II Type 2 Receptor,Angiotensin Type 2 Receptor,Receptor, Angiotensin II Type 2,Angiotensin AT2 Receptor,AT2 Receptor, Angiotensin,Receptor, Angiotensin AT2
D044140 Receptor, Angiotensin, Type 1 An angiotensin receptor subtype that is expressed at high levels in a variety of adult tissues including the CARDIOVASCULAR SYSTEM, the KIDNEY, the ENDOCRINE SYSTEM and the NERVOUS SYSTEM. Activation of the type 1 angiotensin receptor causes VASOCONSTRICTION and sodium retention. Angiotensin II Type 1 Receptor,Angiotensin Type 1 Receptor,Angiotensin Type 1a Receptor,Angiotensin Type 1b Receptor,Receptor, Angiotensin, Type 1a,Receptor, Angiotensin, Type 1b,Angiotensin AT1 Receptor,Angiotensin AT1a Receptor,Angiotensin AT1b Receptor,Angiotensin II Type 1a Receptor,Angiotensin II Type 1b Receptor,Receptor, Angiotensin II Type 1,Receptor, Angiotensin II Type 1a,Receptor, Angiotensin II Type 1b,AT1 Receptor, Angiotensin,AT1a Receptor, Angiotensin,AT1b Receptor, Angiotensin,Receptor, Angiotensin AT1,Receptor, Angiotensin AT1a,Receptor, Angiotensin AT1b

Related Publications

S Nouet, and C Nahmias
January 1996, Blood pressure. Supplement,
S Nouet, and C Nahmias
July 1995, Trends in pharmacological sciences,
S Nouet, and C Nahmias
February 2002, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
S Nouet, and C Nahmias
January 1998, Endocrine research,
S Nouet, and C Nahmias
November 1998, Regulatory peptides,
S Nouet, and C Nahmias
January 1996, Advances in experimental medicine and biology,
S Nouet, and C Nahmias
April 2002, Current hypertension reports,
S Nouet, and C Nahmias
October 2001, The Journal of biological chemistry,
Copied contents to your clipboard!