Cytokine-mobilized peripheral blood progenitor cells for allogeneic reconstitution of miniature swine. 2000

C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston 02129, USA.

BACKGROUND Because of the relative ease of acquisition, increased yield, and improved engraftment characteristics, mobilized peripheral blood progenitor (stem) cells (PBSCs) have recently become the preferred source for hematopoietic stem cell transplantation. In our laboratory, procurement of a megadose of PBSCs is necessary for on-going studies evaluating non-myelosuppressive transplant regimens for the induction of mixed chimerism and allograft tolerance. To exploit hematopoietic growth factor synergy, we have sought to combine growth factors with proven utility to improve PBSC mobilization and maximize our PBSC procurement through an automated collection procedure. METHODS Mobilization characteristics of PBSCs were determined in 2-5-month-old miniature swine. Animals received either swine recombinant stem cell factor (pSCF, 100 microg/kg) and swine recombinant interleukin 3 (pIL-3, 100 microg/kg), administered intramuscularly for 8 days, or pSCF, pIL-3, and human recombinant granulocyte-colony stimulating factor (hG-CSF), at 10 microg/kg. Leukapheresis was performed beginning on day 5 of cytokine treatment and continued daily for 3 days. RESULTS Collection of PBSCs from cytokine-mobilized animals via an automated leukapheresis procedure demonstrated a 10-fold increase in the number of total nucleated cells (TNC) (20-30 x 10(10) TNC) compared to bone marrow harvesting (2-3 x 10(10) total TNC). A more rapid rise in white blood cells (WBCs) was seen after administration of all three cytokines compared to pSCF and pIL-3 alone. An increase in colony-forming unit granulocyte-macrophage frequency measured daily from peripheral blood during cytokine treatment, was seen with the addition of hG-CSF to pSCF/pIL-3 correlating well with the rise in WBCs. Similarly, the addition of hG-CSF demonstrated a notable increase in the median progenitor cell yield from the 3-day leukapheresis procedure. Cytokine-mobilized PBSCs were capable of hematopoietic reconstitution. PBSCs mobilized with pSCF/pIL-3 were infused into an SLA-matched recipient conditioned with cyclophosphamide (50 mg/kg) and total body irradiation 1150 cGy. Neutrophil and platelet engraftment occurred on days 5 and 7, respectively, with minimal evidence of graft-versus-host disease. Complete donor chimerism has been demonstrated 331 days after transplant. CONCLUSIONS Our preliminary results show that in this well-defined miniature swine model, recombinant swine cytokine combinations (pSCF, pIL-3 with or without hG-CSF) successfully mobilize a high yield of progenitor cells for allogeneic transplantation. Furthermore, these cytokine-mobilized PBSCs demonstrate the potential to reconstitute hematopoiesis and provide long-term engraftment in miniature swine.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D007937 Leukapheresis The preparation of leukocyte concentrates with the return of red cells and leukocyte-poor plasma to the donor. Leukocytapheresis,Leukopheresis,Lymphapheresis,Lymphocytapheresis,Leukocytopheresis,Lymphocytopheresis,Lymphopheresis,Leukaphereses,Leukocytaphereses,Leukocytophereses,Leukophereses,Lymphaphereses,Lymphocytaphereses,Lymphocytophereses,Lymphophereses
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D013556 Swine, Miniature Genetically developed small pigs for use in biomedical research. There are several strains - Yucatan miniature, Sinclair miniature, and Minnesota miniature. Miniature Swine,Minipigs,Miniature Swines,Minipig,Swines, Miniature
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic

Related Publications

C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
April 1996, Seminars in oncology,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
January 1994, Progress in clinical and biological research,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
May 2000, Leukemia & lymphoma,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
May 1996, Leukemia,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
January 1994, Journal of clinical apheresis,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
March 1995, Blood,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
August 1996, Blood,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
December 1995, Blood,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
January 2002, Cancer treatment and research,
C Colby, and Q Chang, and Y Fuchimoto, and V Ferrara, and M Murphy, and R Sackstein, and T R Spitzer, and M E White-Scharf, and D H Sachs
January 1995, Nouvelle revue francaise d'hematologie,
Copied contents to your clipboard!