Calcium oxalate crystallization kinetics studied by oxalate-induced turbidity in fresh human urine and artificial urine. 2000

J P Kavanagh, and L Jones, and P N Rao
Department of Urology, South Manchester University Hospitals Trust, Withington, Manchester M20 2LR, U.K. johnk@fs1.with.man.ac.uk

We have studied the kinetics of oxalate-induced turbidity in fresh human urine and artificial urine. Assays are performed in 96-well plates, which allows many oxalate concentrations to be studied, repeatedly, in a short time. The metastable limit is defined in terms of the lowest oxalate concentration that gives a rate of change of attenuance significantly greater than the control. Interpretation of rates above this limit is based on ln/ln plots of initial rates against added oxalate concentration. This approach has a good theoretical basis, is well supported by our results and gives a turbidity rate index that is related to the product of the growth rate constant and a factor relating to the number and characteristics of the heteronuclei responsible for initiation of crystallization. This interpretation is posited upon the assumptions that second-order crystallization kinetics occur in unseeded urine when supersaturation exceeds the metastable limit and that aggregation during the initial phase of crystallization does not significantly contribute to changes in turbidity. Metastable limits of urine from healthy volunteers corresponded to a calcium oxalate supersaturation ratio of approx. 10. The turbidity rate index was higher in human urine than in artificial urine. The metastable limit, based on either oxalate concentration or supersaturation, for induction of calcium oxalate crystallization in normal human urine is higher than is likely to be found in normal subjects in vivo. The shape of the relationship between the metastable limit (based on oxalate concentration) and calcium concentration emphasizes the benefit of achieving a low urine calcium concentration. Comparison of the turbidity rate indices for human and artificial urine suggests that the role of nucleation promoters is more dominant than that of growth inhibitors.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009391 Nephelometry and Turbidimetry Chemical analysis based on the phenomenon whereby light, passing through a medium with dispersed particles of a different refractive index from that of the medium, is attenuated in intensity by scattering. In turbidimetry, the intensity of light transmitted through the medium, the unscattered light, is measured. In nephelometry, the intensity of the scattered light is measured, usually, but not necessarily, at right angles to the incident light beam. Turbidimetry,Nephelometry,Turbidimetry and Nephelometry
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002129 Calcium Oxalate The calcium salt of oxalic acid, occurring in the urine as crystals and in certain calculi. Calcium Oxalate (1:1),Calcium Oxalate Dihydrate,Calcium Oxalate Dihydrate (1:1),Calcium Oxalate Monohydrate,Calcium Oxalate Monohydrate (1:1),Calcium Oxalate Trihydrate,Dihydrate, Calcium Oxalate,Monohydrate, Calcium Oxalate,Oxalate, Calcium,Trihydrate, Calcium Oxalate
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014545 Urinary Calculi Low-density crystals or stones in any part of the URINARY TRACT. Their chemical compositions often include CALCIUM OXALATE, magnesium ammonium phosphate (struvite), CYSTINE, or URIC ACID. Urinary Stones,Urinary Tract Stones,Calculi, Urinary,Calculus, Urinary,Stone, Urinary,Stone, Urinary Tract,Stones, Urinary,Stones, Urinary Tract,Urinary Calculus,Urinary Stone,Urinary Tract Stone
D016014 Linear Models Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression. Linear Regression,Log-Linear Models,Models, Linear,Linear Model,Linear Regressions,Log Linear Models,Log-Linear Model,Model, Linear,Model, Log-Linear,Models, Log-Linear,Regression, Linear,Regressions, Linear

Related Publications

J P Kavanagh, and L Jones, and P N Rao
March 1977, The Journal of urology,
J P Kavanagh, and L Jones, and P N Rao
December 2001, American journal of kidney diseases : the official journal of the National Kidney Foundation,
J P Kavanagh, and L Jones, and P N Rao
January 1987, Urological research,
J P Kavanagh, and L Jones, and P N Rao
January 1984, Nephrologie,
J P Kavanagh, and L Jones, and P N Rao
May 1978, Investigative urology,
J P Kavanagh, and L Jones, and P N Rao
January 2004, Clinical chemistry and laboratory medicine,
J P Kavanagh, and L Jones, and P N Rao
July 1984, The Journal of urology,
J P Kavanagh, and L Jones, and P N Rao
September 1995, The Journal of urology,
J P Kavanagh, and L Jones, and P N Rao
September 1988, Kidney international,
J P Kavanagh, and L Jones, and P N Rao
May 1978, Investigative urology,
Copied contents to your clipboard!