Differential innervation of parvalbumin-immunoreactive interneurons of the basolateral amygdaloid complex by cortical and intrinsic inputs. 2000

Y Smith, and J F Paré, and D Paré
Yerkes Regional Primate Research Center, Atlanta, Georgia 30329, USA.

In the basolateral (BL) amygdaloid complex, the excitability of projection cells is regulated by intrinsic inhibitory interneurons using gamma-aminobutyric acid (GABA) as a transmitter. A subset of these cells are labeled in a Golgi-like manner by Parvalbumin (PV) immunohistochemistry. Recently, we have shown that the overwhelming majority of axon terminals contacting these PV-immunoreactive neurons form asymmetric synapses. The present study was undertaken to identify the source(s) of these inputs. Since previous work had revealed that thalamic axons form very few synapses on BL interneurons (< 1%), we focused on cortical and intra-amygdaloid inputs. Iontophoretic injections of the anterograde tracers Phaseolus vulgaris-leucoagglutinin or biotinylated dextran amine were performed in various cortical fields in cats (perirhinal, entorhinal, pre/infralimbic cortices) and monkeys (orbitofrontal region) or in the BL amygdaloid nucleus in cats. These injections resulted in a large number of anterogradely labeled terminals forming asymmetric synapses in the BL complex. Following cortical injections, numerous anterogradely labeled terminals were found in the vicinity of PV-immunoreactive interneurons in the BL amygdala. However, only approximately 1% of these terminals formed synaptic contacts with PV-immunoreactive profiles. In contrast, as many as 11% of the terminals contributed by the intranuclear axon collaterals of BL projection cells established synapses with PV-immunoreactive elements. Since the axon terminals of PV-immunoreactive interneurons are enriched in GABA and they exclusively form symmetric synapses, these results suggest that PV-immunoreactive interneurons are predominantly involved in feedback inhibition in the BL amygdaloid complex.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Smith, and J F Paré, and D Paré
February 2006, The Journal of comparative neurology,
Y Smith, and J F Paré, and D Paré
March 2011, The Journal of comparative neurology,
Y Smith, and J F Paré, and D Paré
August 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Smith, and J F Paré, and D Paré
September 1995, The Journal of comparative neurology,
Y Smith, and J F Paré, and D Paré
February 1988, Brain research,
Y Smith, and J F Paré, and D Paré
September 2000, Synapse (New York, N.Y.),
Y Smith, and J F Paré, and D Paré
October 2000, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Copied contents to your clipboard!