Theta ganglion cell type of cat retina. 2000

T Isayama, and D M Berson, and M Pu
Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.

We define a new bistratified ganglion cell type of cat retina using intracellular staining in vitro. The theta cell has a small soma, slender axon, and delicate, highly branched dendritic arbor. Dendritic fields are intermediate in size among cat ganglion cells, with diameters typically two to three times those of beta cells. Fields increase in size with distance from the area centralis, ranging in diameter from 70 to 150 microns centrally to a maximum of 700 microns in the periphery. Theta cells have markedly smaller dendritic fields within the nasal visual streak than above or below it and smaller fields nasally than temporally. Dendritic arbors are narrowly bistratified. The outer arbor lies in the lower part of sublamina a (OFF sublayer) of the inner plexiform layer where it costratifies with the dendrites of OFF alpha cells. The inner arbor occupies the upper part of sublamina b (ON sublayer), where it costratifies with ON alpha dendrites. The outer and inner arbors are composed of many relatively short segments and are densely interconnected by branches that traverse the a/b sublaminar border. Experiments combining retrograde labeling with intracellular staining indicate that theta cells project to the superior colliculus and to two components of the dorsal lateral geniculate nucleus (the C laminae and medial interlaminar nucleus). Theta cells project contralaterally from the nasal retina and ipsilaterally from the temporal retina. They apparently correspond to a sluggish transient or phasic W-cell with an ON-OFF receptive field center.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic

Related Publications

T Isayama, and D M Berson, and M Pu
September 1998, The Journal of comparative neurology,
T Isayama, and D M Berson, and M Pu
May 1993, Vision research,
T Isayama, and D M Berson, and M Pu
November 1987, The Journal of comparative neurology,
T Isayama, and D M Berson, and M Pu
January 1976, Vision research,
T Isayama, and D M Berson, and M Pu
February 1983, Journal of neurophysiology,
T Isayama, and D M Berson, and M Pu
October 1989, The Journal of comparative neurology,
T Isayama, and D M Berson, and M Pu
December 1967, Nature,
T Isayama, and D M Berson, and M Pu
April 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Isayama, and D M Berson, and M Pu
July 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Isayama, and D M Berson, and M Pu
January 1994, Visual neuroscience,
Copied contents to your clipboard!