Iodine-125 decay in a synthetic oligodeoxynucleotide. I. Fragment size distribution and evaluation of breakage probability. 2000

P N Lobachevsky, and R F Martin
Molecular Radiation Biology, Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia.

Lobachevsky, P. N. and Martin, R. F. Iodine-125 Decay in a Synthetic Oligodeoxynucleotide. I. Fragment Size Distribution and Evaluation of Breakage Probability. Incorporation of (125)I-dC into a defined location of a double-stranded oligodeoxynucleotide was used to investigate DNA breaks arising from decay of the Auger electron-emitting isotope. Samples of the oligodeoxynucleotide were also labeled with (32)P at either the 5' or 3' end of either the (125)I-dC-containing (so-called top) or opposite (bottom) strand and incubated in 20 mM phosphate buffer or the same buffer plus 2 M dimethylsulfoxide at 4 degrees C during 18-20 days. The (32)P-end-labeled fragments produced by (125)I decays were separated on denaturing polyacrylamide gels, and the (32)P activity in each fragment was determined by scintillation counting after elution of fragments from the gel. The relative fragment size distributions were then normalized on a per decay basis and converted to a distribution of single-strand break probabilities as a function of distance from the (125)I-dC. The results of three to five experiments for each of eight possible combinations of labels and incubation conditions are presented as a table showing the relative numbers of (32)P counts in different fragments as well as graphs of normalized fragment size distributions and probabilities of breakage. The average numbers of single-strand breaks per (125)I decay are 3. 3 and 3.7 in the top strand and 1.3 and 1.5 in the bottom strand with and without dimethylsulfoxide, respectively. Every (125)I decay event produces a break in the top strand, and breakage of the bottom strand occurs in 75-80% of the events. Thus a double-strand break is produced by (125)I decay with a probability of approximately 0.8.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

P N Lobachevsky, and R F Martin
January 1974, International journal of radiation biology and related studies in physics, chemistry, and medicine,
P N Lobachevsky, and R F Martin
April 1992, Physical review. A, Atomic, molecular, and optical physics,
P N Lobachevsky, and R F Martin
August 1981, Science (New York, N.Y.),
P N Lobachevsky, and R F Martin
January 1971, Dansk tidsskrift for farmaci,
P N Lobachevsky, and R F Martin
February 1985, Radiation research,
P N Lobachevsky, and R F Martin
January 1996, Acta oncologica (Stockholm, Sweden),
P N Lobachevsky, and R F Martin
January 2022, Dose-response : a publication of International Hormesis Society,
P N Lobachevsky, and R F Martin
July 1962, Die Medizinische Welt,
P N Lobachevsky, and R F Martin
February 1977, Journal of the National Cancer Institute,
Copied contents to your clipboard!