Regulation of microglial tyrosine phosphorylation in response to neuronal injury. 2000

R Griffith, and J Soria, and J G Wood
Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA.

The regulation and substrate specificity of microglial phosphotyrosine (ptyr) increases accompanying motor neuron degeneration in the rat spinal cord induced by injection of the cytotoxic lectin, ricin, into sciatic nerve were examined using specific enzyme inhibitors, immunohistochemistry, and Western blot analyses. Optical density measurements of immunostained sections show that microglial ptyr levels are elevated at 3 days postinjection. This period coincides with initial stages of neuronal degeneration, and ptyr levels are maximal at 7 days. We next asked whether this increase is due to increased tyrosine kinase or decreased tyrosine phosphatase activities by assaying ptyr immunostaining in animals that received osmotic pump infusion of the nonreceptor tyrosine kinase inhibitor, herbimycin A, for the 7-day survival period. When compared to the control ventral horn, microglial ptyr on the experimental side was attenuated by at least 45% in the presence of herbimycin A. In order to identify microglial substrates undergoing increased tyrosine phosphorylation, Western blot analysis was performed on hemicord and punch biopsy samples from control and experimental sides following ricin injection. A subset of two proteins was identified whose increased ptyr was almost completely attenuated in the herbimycin-A-treated animals. We conclude that the data support earlier indications that upregulation of microglial tyrosine phosphorylation is a key early event in response to neuronal injury. Further, this upregulation is due to turning on tyrosine kinase activities, particularly nonreceptor kinases, and the end product is phosphorylation of a very limited number of substrates. This suggests the activation of specific tyrosine phosphorylation pathways, which may represent critical therapeutic intervention points, rather than a global response. The results are discussed in terms of recent cell culture models of microglial activation and earlier data demonstrating elevated microglial ptyr in neurodegenerative disease.

UI MeSH Term Description Entries
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000870 Anterior Horn Cells MOTOR NEURONS in the anterior (ventral) horn of the SPINAL CORD which project to SKELETAL MUSCLES. Anterior Horn Neurons,Neurons, Anterior Horn,Neurons, Ventral Horn,Ventral Horn Cells,Ventral Horn Neurons,Anterior Horn Cell,Anterior Horn Neuron,Cell, Anterior Horn,Cell, Ventral Horn,Cells, Anterior Horn,Cells, Ventral Horn,Neuron, Anterior Horn,Neuron, Ventral Horn,Ventral Horn Cell,Ventral Horn Neuron
D012276 Ricin A protein phytotoxin from the seeds of Ricinus communis, the castor oil plant. It agglutinates cells, is proteolytic, and causes lethal inflammation and hemorrhage if taken internally. Castor Bean Lectin,Lectin, Castor Bean,Lectin, Ricinus,Ricin Toxin,RCA 60,RCA60,Ricin A Chain,Ricin B Chain,Ricin D,Ricin I,Ricinus Toxin,A Chain, Ricin,B Chain, Ricin,Ricinus Lectin,Toxin, Ricin,Toxin, Ricinus

Related Publications

R Griffith, and J Soria, and J G Wood
July 1994, Glia,
R Griffith, and J Soria, and J G Wood
September 1988, The Journal of biological chemistry,
R Griffith, and J Soria, and J G Wood
February 1990, The Journal of biological chemistry,
R Griffith, and J Soria, and J G Wood
February 2022, Brain and nerve = Shinkei kenkyu no shinpo,
R Griffith, and J Soria, and J G Wood
May 2021, Progress in neurobiology,
R Griffith, and J Soria, and J G Wood
July 2017, EMBO reports,
R Griffith, and J Soria, and J G Wood
January 2000, Toxicologic pathology,
R Griffith, and J Soria, and J G Wood
May 1992, Brain research. Developmental brain research,
Copied contents to your clipboard!