From IgG monoclonals to IgM-like molecules. 1999

M Ernst, and D Meier, and H H Sonneborn
Biotest AG, Research Department, Dreieich, Germany. manfred_ernst@biotest.de

One problem in blood group testing is that IgG monoclonal antibodies, in contrast to IgM, do not usually agglutinate erythrocytes. One of the reasons is the high zeta potential induced by the negative charge of the cell surface. During the last few years, we have produced a series of human monoclonal antibodies by the conventional fusion technique directed against antigens of the Rh blood group system. Some of these monoclonals, especially those directed against Rh-subgroups such as the c-antigen, were mainly of the IgG-subtype and unsuitable for agglutination tests. We have therefore tried to establish a molecular biological method to make IgM-like molecules from IgG monoclonals. From the c-antigen specific human hybridoma BS 240 (IgG subtype), we isolated mRNA that was transcribed into cDNA and then amplified by PCR using family specific primers. The heavy and light chain products were cloned into the pHen vector containing a DNA linker fragment, a myc-tag for identification and a His-tag for purification. After transformation in E.coli and phage rescue with helper phage, the culture supernatant was screened for antigen positive recombinant phage antibodies as a first control for specificity using c-antigen positive erythrocytes and anti-M13 antibodies as bridging antibodies (Coombs technique). Erythrocytes being negative for the c-antigen served as a negative control. After changing the culture conditions, soluble single chain fragments (scFv) were obtained from the periplasmatic extract. Specificity was shown using the c-antigen positive and negative erythrocytes and the 9E10 antibody (anti-myc) as a bridging antibody. To obtain IgM-like molecules, DNA coding for the specific scFv was cloned into the vector pSTE containing DNA coding for the monomer of core streptavidin. After expression, purification and refolding of the monomer, the core streptavidin combines to form tetrameric structures, termed scFv::strep, that are able to bind biotin as shown using ELISA plates coated with biotinylated BSA. Binding was detected with 9E10 and a peroxidase conjugated secondary antibody. In the agglutination assay, the construct was able to agglutinate c-antigen positive erythrocytes but not the negative erythrocytes. These experiments show that it is possible to construct IgM-like agglutinating molecules from cells containing secreting IgG antibodies. Experiments employing human antibody libraries instead of hybridoma cell lines are now in progress.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D007128 Immunoglobulin Fragments Partial immunoglobulin molecules resulting from selective cleavage by proteolytic enzymes or generated through PROTEIN ENGINEERING techniques. Antibody Fragment,Antibody Fragments,Ig Fragment,Ig Fragments,Immunoglobulin Fragment,Fragment, Antibody,Fragment, Ig,Fragment, Immunoglobulin,Fragments, Antibody,Fragments, Ig,Fragments, Immunoglobulin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Ernst, and D Meier, and H H Sonneborn
January 2018, Methods in molecular biology (Clifton, N.J.),
M Ernst, and D Meier, and H H Sonneborn
December 2014, The Lancet. Respiratory medicine,
M Ernst, and D Meier, and H H Sonneborn
May 1966, Biochimica et biophysica acta,
M Ernst, and D Meier, and H H Sonneborn
September 1968, Clinical and experimental immunology,
M Ernst, and D Meier, and H H Sonneborn
December 1983, European journal of immunology,
M Ernst, and D Meier, and H H Sonneborn
July 1993, Molecular immunology,
M Ernst, and D Meier, and H H Sonneborn
February 1994, Journal of immunological methods,
M Ernst, and D Meier, and H H Sonneborn
August 1983, European journal of immunology,
M Ernst, and D Meier, and H H Sonneborn
July 1989, Pediatric nephrology (Berlin, Germany),
Copied contents to your clipboard!