Intrarenal dopamine coordinates the effect of antinatriuretic and natriuretic factors. 2000

U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.

The precision by which sodium balance is regulated suggests an intricate interaction between modulatory factors released from intra- and extrarenal sources. Intrarenally produced dopamine has a central role in this interactive network. Dopamine, produced in renal tubular cells acts as an autocrine and paracrine factor to inhibit the activity of Na+,K+-ATPase as well as of a number of sodium influx pathways. The natriuretic effect of dopamine is most prominent under high salt diet. The antinatriuretic effects of noradrenaline, acting on alpha-adrenoceptors and angiotensin II are opposed by dopamine as well as by atrial natriuretic peptide (ANP). Several lines of evidence have suggested that ANP acts via the renal dopamine system and recent studies from our laboratory have shown that this effect is attributed to recruitment of silent D1 receptors from the interior of the cell towards the plasma membrane. Taken together, the observations suggest that dopamine coordinates the effects of antinatriuretic and natriuretic factors and indicate that an intact renal dopamine system is of major importance for the maintenance of sodium homeostasis and normal blood pressure.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D045283 Natriuretic Agents Endogenous or exogenous chemicals that regulate the WATER-ELECTROLYTE BALANCE in the body. They consist of peptides and non-peptide compounds. Chloriuretic Hormone,Natriuretic Agent,Natriuretic Factor,Natriuretic Hormone,Natriuretic Hormones,Chloriuretic Hormones,Natriuretic Effect,Natriuretic Effects,Natriuretic Factors,Agent, Natriuretic,Agents, Natriuretic,Effect, Natriuretic,Effects, Natriuretic,Factor, Natriuretic,Factors, Natriuretic,Hormone, Chloriuretic,Hormone, Natriuretic,Hormones, Chloriuretic,Hormones, Natriuretic

Related Publications

U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
February 1979, The Journal of physiology,
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
June 1995, Journal of autonomic pharmacology,
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
April 1977, British journal of clinical pharmacology,
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
January 1975, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
April 2000, Clinical and experimental hypertension (New York, N.Y. : 1993),
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
September 1982, Canadian journal of physiology and pharmacology,
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
July 1981, Schweizerische medizinische Wochenschrift,
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
November 1989, Clinical science (London, England : 1979),
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
November 1990, American journal of hypertension,
U Holtbäck, and M S Kruse, and H Brismar, and A Aperia
January 1983, Acta gastro-enterologica Belgica,
Copied contents to your clipboard!