The role of the membrane-bound tumour antigen, melanotransferrin (p97), in iron uptake by the human malignant melanoma cell. 2000

D R Richardson
Department of Medicine, University of Queensland, Royal Brisbane Hospital, Brisbane, Australia. d.richardson@hri.org.au

Melanotransferrin (MTf) is a membrane-bound transferrin (Tf) homologue with several characteristics in common with serum Tf. MTf is found at high levels in melanoma cells and previous studies have shown that MTf can bind Fe. In addition, Chinese hamster ovary cells transfected with MTf transport Fe from 59Fe-citrate at greater rates than control cells. However, the role of MTf in the Fe uptake process of human melanoma cells remains unknown. In the present study we have characterized the role of MTf in Fe uptake by SK-Mel-28 melanoma cells in order to understand its function. Initial studies examined whether modulation of intracellular Fe levels using the Fe chelator desferrioxamine (DFO) or the Fe donor ferric ammonium citrate (FAC) could change MTf mRNA levels. In contrast to transferrin receptor (TfR) mRNA that increased after exposure to DFO and decreased after incubation with FAC, there was no change in MTf mRNA levels. In addition, compared to control cells, there was no alteration of 125I-labelled anti-MTf mAb-binding in cells exposed to DFO or FAC, suggesting no change in the number of MTf sites. Further studies examined the ability of DFO and FAC to modulate Fe uptake from 59Fe-citrate which is bound by MTf. In contrast to the effect of DFO or FAC at increasing and decreasing Fe uptake from 59Fe-Tf, respectively, DFO had no influence on 59Fe-citrate uptake, whereas FAC markedly increased it. Collectively, these studies suggest that MTf is not regulated in a manner similar to the TfR in response to cellular Fe levels. MTf can be removed from the membrane by phosphatidylinositol-specific phospholipase C (PtdIns-PLC). Preincubation of melanoma cells with PtdIns-PLC reduced anti-MTf mAb binding to 3% of the control, while PtdIns-PLC only slightly reduced 59Fe uptake from 59Fe-citrate. These results suggest that MTf played only a minor role in Fe uptake from 59Fe-citrate by these cells. The expression of MTf mRNA (poly A+) was also examined in 50 human tissues and found to be markedly different to Tf mRNA or TfR mRNA. Surprisingly, MTf mRNA expression was widespread in normal tissues, and was observed at its highest levels in the salivary gland. In contrast to expectations, MTf mRNA expression was generally greater in adult than fetal tissues.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D002951 Citrates Derivatives of CITRIC ACID.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

D R Richardson
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
D R Richardson
April 2005, The Journal of biological chemistry,
D R Richardson
April 1986, Human genetics,
D R Richardson
February 1988, The Journal of biological chemistry,
D R Richardson
November 2001, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Copied contents to your clipboard!