Assessment of amino-acid substitutions at tryptophan 16 in alpha-galactosidase. 2000

E Maranville, and A Zhu
Laboratory of Molecular Immunology, Lindsley F. Kimball Research Institute, The New York Blood Center, New York, USA.

The tryptophan residue at position 16 of coffee bean alpha-galactosidase has previously been shown to be essential for enzyme activity. The potential role of this residue in the catalytic mechanism has been further studied by using site-directed mutagenesis to substitute every other amino acid for tryptophan at that site. Mutant enzymes were expressed in Pichia pastoris, a methylotrophic yeast strain, and their kinetic parameters were calculated. Only amino acids containing aromatic rings (phenylalanine and tyrosine) were able to support a significant amount of enzyme activity, but the kinetics and pH profiles of these mutants differed from wild-type. Substitution of arginine, lysine, methionine, or cysteine at position 16 allowed a small amount of enzyme activity with the optimal pH shifted towards more acidic. All other residues abolished enzyme activity. Our data support the hypothesis that tryptophan 16 is affecting the pKa of a carboxyl group at the active site that participates in catalysis. We also describe an assay for continuously measuring enzyme kinetics using fluorogenic 4-methylumbelliferyl substrates. This is useful in screening enzymes from colonies and determining the enzyme kinetics when the enzyme concentration is not known.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000519 alpha-Galactosidase An enzyme that catalyzes the hydrolysis of terminal, non-reducing alpha-D-galactose residues in alpha-galactosides including galactose oligosaccharides, galactomannans, and galactolipids. Beano,Melibiase,alpha-D-Galactopyranosidase,alpha-D-Galactosidase,alpha-Galactisidase,alpha-Galactosidase A,alpha-Galactosidases,alpha D Galactopyranosidase,alpha D Galactosidase,alpha Galactisidase,alpha Galactosidase,alpha Galactosidase A,alpha Galactosidases
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D019943 Amino Acid Substitution The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties. Amino Acid Substitutions,Substitution, Amino Acid,Substitutions, Amino Acid

Related Publications

E Maranville, and A Zhu
July 1981, The Journal of biological chemistry,
E Maranville, and A Zhu
February 1965, The Journal of biological chemistry,
E Maranville, and A Zhu
October 1998, Biochemistry. Biokhimiia,
E Maranville, and A Zhu
February 1965, The Journal of biological chemistry,
E Maranville, and A Zhu
July 1963, The Journal of biological chemistry,
Copied contents to your clipboard!