Human invariant valpha24+ natural killer T cells activated by alpha-galactosylceramide (KRN7000) have cytotoxic anti-tumour activity through mechanisms distinct from T cells and natural killer cells. 2000

A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
Queensland Institute of Medical Research and Department of Medicine, University of Queensland, Royal Brisbane Hospital, Brisbane, Australia.

Human Valpha24 + NKT cells, a subpopulation of natural killer cell receptor (NKR-P1A) expressing T cells with an invariant T-cell receptor (TCR; Valpha24JalphaQ) are stimulated by the glycolipid, alpha-galactosylceramide (KRN7000), in a CD1d-dependent, TCR-mediated fashion. Little is known about Valpha24 + NKT-cell function. The murine counterpart, Valpha14 + NKT cells, appear to have an important role in controlling malignancy. There are no human data examining the role of Valpha24 + NKT cells in controlling human malignancy. We report that Valpha24 + NKT cells have perforin-mediated cytotoxicity against haemopoietic malignancies. Valpha24 TCR, CD1d and alpha-galactosylceramide may all play a role in cytotoxicity but are not absolute requirements. The greatest cytotoxicity was observed against the U937 tumour cell line (95 +/- 5% lysis). THP-1, Molt4, C1R cells and allogeneic mismatched dendritic cells were also sensitive to Valpha24 + NKT cytotoxicity but neither the NK target, K562, nor lymphokine-activated killer-sensitive Daudi cells, were sensitive. These results indicate a killing pattern distinct from conventional major histocompatibility complex-restricted T cells, NK cells and other cytotoxic lymphoid cells previously described. We conclude that human Valpha24 + NKT cells have cytotoxic anti-tumour activity against haemopoietic malignancies through effector mechanisms distinct from conventional T cells and NK cells and that their specific stimulator KRN7000 may have therapeutic potential.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005699 Galactosylceramides Cerebrosides which contain as their polar head group a galactose moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in beta-galactosidase, is the cause of galactosylceramide lipidosis or globoid cell leukodystrophy. Galactocerebrosides,Galactosyl Ceramide,Galactosyl Ceramides,Galactosylceramide,Ceramide, Galactosyl,Ceramides, Galactosyl
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016692 Receptors, Antigen, T-Cell, gamma-delta T-cell receptors composed of CD3-associated gamma and delta polypeptide chains and expressed primarily in CD4-/CD8- T-cells. The receptors appear to be preferentially located in epithelial sites and probably play a role in the recognition of bacterial antigens. The T-cell receptor gamma/delta chains are separate and not related to the gamma and delta chains which are subunits of CD3 (see ANTIGENS, CD3). Antigen Receptors, T-Cell, gamma-delta,T-Cell Receptors delta-Chain,T-Cell Receptors gamma-Chain,T-Cell Receptors, gamma-delta,TcR gamma-delta,Antigen T Cell Receptor, delta Chain,Antigen T Cell Receptor, gamma Chain,Receptors, Antigen, T Cell, gamma delta,T Cell Receptors, gamma delta,T-Cell Receptor delta-Chain,T-Cell Receptor gamma-Chain,T-Cell Receptor, gamma-delta,T Cell Receptor delta Chain,T Cell Receptor gamma Chain,T Cell Receptor, gamma delta,T Cell Receptors delta Chain,T Cell Receptors gamma Chain,TcR gamma delta,delta-Chain, T-Cell Receptor,delta-Chain, T-Cell Receptors,gamma-Chain, T-Cell Receptor,gamma-Chain, T-Cell Receptors,gamma-delta T-Cell Receptor,gamma-delta T-Cell Receptors,gamma-delta, TcR
D052899 Pore Forming Cytotoxic Proteins Proteins secreted from an organism which form membrane-spanning pores in target cells to destroy them. This is in contrast to PORINS and MEMBRANE TRANSPORT PROTEINS that function within the synthesizing organism and COMPLEMENT immune proteins. These pore forming cytotoxic proteins are a form of primitive cellular defense which are also found in human LYMPHOCYTES.

Related Publications

A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
June 2007, Clinical and experimental immunology,
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
June 2005, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
November 2005, International journal of cancer,
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
December 2008, BMC immunology,
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
January 2021, PloS one,
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
December 2004, Blood,
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
December 1999, Immunology,
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
September 2010, Clinical immunology (Orlando, Fla.),
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
December 2020, European journal of preventive cardiology,
A Nicol, and M Nieda, and Y Koezuka, and S Porcelli, and K Suzuki, and K Tadokoro, and S Durrant, and T Juji
April 2008, Blood,
Copied contents to your clipboard!