Multiplex polymerase chain reaction-based analysis of T-cell receptor gamma gene rearrangements for the determination of T-lymphocyte clonality. 2000

H Ma, and D H Smith, and A W Hsie, and J B Ward
Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX, USA.

Determination of the frequency of mutations at hprt or other loci in human lymphocytes provides a useful biomarker for human exposure to mutagens. One problem, however, is distinguishing between unique mutants and sibling mutants arising as progeny of an earlier mutant cell. We have developed a multiplex polymerase chain reaction (PCR)-based method to analyze T-cell receptor (TCR) gamma gene rearrangements for determination of T-cell clonality in mutational spectrum analysis. PCR primers for different subgroups of the V gene segment of the TCR gamma gene were selected at different sites in the TCR gamma gene so that the size of PCR products could define which V subgroup was involved in rearranged TCR gamma genes; gamma genes involving different V and J subgroups could be determined directly by PCR. Mutant T-lymphocytes with rearranged TCR gamma genes containing the same V and J subgroups were analyzed using PCR-based denaturing polyacrylamide gel electrophoresis. All of the 161 hprt mutant clones analyzed contained rearranged TCR gamma genes. Rearrangements among all subgroups of the V and J gene segments of the TCR gamma gene could be detected. VgammaI and Jgamma1/2 subgroups were involved in 69 and 71% of rearranged TCR gamma genes, respectively. This PCR-based analysis of TCR gamma gene rearrangements provides a simple and comprehensive method for identifying the clonality of mutant T-lymphocytes in human hprt mutant lymphocyte assay and mutational spectrum analysis.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015334 Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor Ordered rearrangement of T-cell variable gene regions coding for the gamma-chain of antigen receptors. T-Cell Antigen Receptor gamma-Chain Gene Rearrangement,T-Lymphocyte Antigen Receptor gamma-Chain Gene Rearrangement,Gene Rearrangement, gamma-Chain T Cell Antigen Receptor,T Cell gamma-Chain Gene Rearrangement,T Lymphocyte gamma-Chain Gene Rearrangement,Gene Rearrangement, gamma Chain T Cell Antigen Receptor,T Cell Antigen Receptor gamma Chain Gene Rearrangement,T Cell gamma Chain Gene Rearrangement,T Lymphocyte Antigen Receptor gamma Chain Gene Rearrangement,T Lymphocyte gamma Chain Gene Rearrangement
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

H Ma, and D H Smith, and A W Hsie, and J B Ward
January 1998, Oncology reports,
H Ma, and D H Smith, and A W Hsie, and J B Ward
April 2007, The Journal of molecular diagnostics : JMD,
H Ma, and D H Smith, and A W Hsie, and J B Ward
June 2001, The Journal of investigative dermatology,
H Ma, and D H Smith, and A W Hsie, and J B Ward
March 2010, The Journal of molecular diagnostics : JMD,
H Ma, and D H Smith, and A W Hsie, and J B Ward
January 2007, Clinical chemistry and laboratory medicine,
H Ma, and D H Smith, and A W Hsie, and J B Ward
January 2003, Terapevticheskii arkhiv,
H Ma, and D H Smith, and A W Hsie, and J B Ward
December 1993, Zhonghua bing li xue za zhi = Chinese journal of pathology,
Copied contents to your clipboard!