Reconstitution of virus-mediated expression of interferon alpha genes in human fibroblast cells by ectopic interferon regulatory factor-7. 2000

W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.

Type I interferons constitute an important part of the innate immune response against viral infection. Unlike the expression of interferon (IFN) B gene, the expression of IFNA genes is restricted to the lymphoid cells. Both IFN regulatory factor 3 and 7 (IRF-3 and IRF-7) were suggested to play positive roles in these genes expression. However, their role in the differential expression of individual subtypes of human IFNA genes is unknown. Using various IFNA reporter constructs in transient transfection assay we found that overexpression of IRF-3 in virus infected 2FTGH cells selectively activated IFNA1 VRE, whereas IRF-7 was able to activate IFNA1, A2, and A4. The binding of recombinant IRF-7 and IRF-3 to these VREs correlated with their transcriptional activation. Nuclear proteins from infected and uninfected IRF-7 expressing 2FTGH cells formed multiple DNA-protein complexes with IFNA1 VRE, in which two unique DNA-protein complexes containing IRF-7 were detected. In 2FTGH cells, virus stimulated expression of IFNB gene but none of the IFNA genes. Reconstitution of IRF-7 synthesis in these cells resulted, upon virus infection, in the activation of seven endogenous IFNA genes in which IFNA1 predominated. These studies suggest that IRF-7 is a critical determinant for the induction of IFNA genes in infected cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
November 1998, The EMBO journal,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
February 1998, Biulleten' eksperimental'noi biologii i meditsiny,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
January 2002, Blood,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
June 1999, The Journal of biological chemistry,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
July 1997, Leukemia,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
December 2001, The Biochemical journal,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
April 2012, Journal of virology,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
December 1989, The Journal of endocrinology,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
June 1983, European journal of biochemistry,
W S Yeow, and W C Au, and Y T Juang, and C D Fields, and C L Dent, and D R Gewert, and P M Pitha
February 2008, European journal of immunology,
Copied contents to your clipboard!