Growth of human diploid fibroblasts in the absence of glucose utilization. 1976

H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath

Normal human diploid fibroblasts were able to undergo one to two cell divisions without glucose utilization in Eagle's minimum essential medium plus 10% dialyzed fetal calf serum if the medium was supplemented with hypoxanthine, thymidine, and uridine (supplemented medium termed HTU-MEM). Under these conditions, the added purine and pyrimidines were required for nucleic acid synthesis, as shown by the inability of Lesch-Nyhan fibroblasts to grow in HTU-MEM. Normal human diploid fibroblasts continued to produce lactate in HTU-MEM, but at a greatly reduced rate. Since cells grew in HTU-MEM without glucose utilization, the probable energy and carbon source was glutamine, which is present in relatively high concentration. Furthermore, the rate of glutamine utilization per cell division was 2-fold greater in HTU-MEM than in medium with 5.5 mM glucose. These results suggest that glutamine can be a major energy source for cells grown in vitro.

UI MeSH Term Description Entries
D007042 Hypoxanthines Purine bases related to hypoxanthine, an intermediate product of uric acid synthesis and a breakdown product of adenine catabolism.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D007926 Lesch-Nyhan Syndrome An inherited disorder transmitted as a sex-linked trait and caused by a deficiency of an enzyme of purine metabolism; HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE. Affected individuals are normal in the first year of life and then develop psychomotor retardation, extrapyramidal movement disorders, progressive spasticity, and seizures. Self-destructive behaviors such as biting of fingers and lips are seen frequently. Intellectual impairment may also occur but is typically not severe. Elevation of uric acid in the serum leads to the development of renal calculi and gouty arthritis. (Menkes, Textbook of Child Neurology, 5th ed, pp127) Choreoathetosis Self-Mutilation Hyperuricemia Syndrome,Hypoxanthine-Phosphoribosyl-Transferase Deficiency Disease,Choreoathetosis Self-Mutilation Syndrome,Complete HGPRT Deficiency Disease,Complete HPRT Deficiency,Complete Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency,Deficiency Disease, Complete HGPRT,Deficiency Disease, Hypoxanthine-Phosphoribosyl-Transferase,Deficiency of Guanine Phosphoribosyltransferase,Deficiency of Hypoxanthine Phosphoribosyltransferase,HGPRT Deficiency,HGPRT Deficiency Disease, Complete,Hypoxanthine Guanine Phosphoribosyltransferase 1 Deficiency,Hypoxanthine Guanine Phosphoribosyltransferase Deficiency,Hypoxanthine Phosphoribosyltransferase Deficiency,Juvenile Gout, Choreoathetosis, Mental Retardation Syndrome,Juvenile Hyperuricemia Syndrome,Lesch-Nyhan Disease,Primary Hyperuricemia Syndrome,Total HPRT Deficiency,Total Hypoxanthine-Guanine Phosphoribosyl Transferase Deficiency,X-Linked Hyperuricemia,X-Linked Primary Hyperuricemia,Choreoathetosis Self Mutilation Hyperuricemia Syndrome,Choreoathetosis Self Mutilation Syndrome,Choreoathetosis Self-Mutilation Syndromes,Complete HPRT Deficiencies,Complete Hypoxanthine Guanine Phosphoribosyltransferase Deficiency,Deficiencies, Complete HPRT,Deficiencies, HGPRT,Deficiencies, Hypoxanthine Phosphoribosyltransferase,Deficiencies, Total HPRT,Deficiency Disease, Hypoxanthine Phosphoribosyl Transferase,Deficiency Diseases, Hypoxanthine-Phosphoribosyl-Transferase,Deficiency, Complete HPRT,Deficiency, HGPRT,Deficiency, Hypoxanthine Phosphoribosyltransferase,Deficiency, Total HPRT,Guanine Phosphoribosyltransferase Deficiencies,Guanine Phosphoribosyltransferase Deficiency,HGPRT Deficiencies,HPRT Deficiencies, Complete,HPRT Deficiencies, Total,HPRT Deficiency, Complete,HPRT Deficiency, Total,Hyperuricemia Syndrome, Juvenile,Hyperuricemia Syndrome, Primary,Hyperuricemia Syndromes, Juvenile,Hyperuricemia Syndromes, Primary,Hyperuricemia, X-Linked,Hyperuricemia, X-Linked Primary,Hyperuricemias, X-Linked,Hyperuricemias, X-Linked Primary,Hypoxanthine Phosphoribosyl Transferase Deficiency Disease,Hypoxanthine Phosphoribosyltransferase Deficiencies,Hypoxanthine-Phosphoribosyl-Transferase Deficiency Diseases,Juvenile Hyperuricemia Syndromes,Lesch Nyhan Disease,Lesch Nyhan Syndrome,Phosphoribosyltransferase Deficiencies, Guanine,Phosphoribosyltransferase Deficiencies, Hypoxanthine,Phosphoribosyltransferase Deficiency, Guanine,Phosphoribosyltransferase Deficiency, Hypoxanthine,Primary Hyperuricemia Syndromes,Primary Hyperuricemia, X-Linked,Primary Hyperuricemias, X-Linked,Self-Mutilation Syndrome, Choreoathetosis,Self-Mutilation Syndromes, Choreoathetosis,Syndrome, Choreoathetosis Self-Mutilation,Syndrome, Juvenile Hyperuricemia,Syndrome, Primary Hyperuricemia,Syndromes, Choreoathetosis Self-Mutilation,Syndromes, Juvenile Hyperuricemia,Syndromes, Primary Hyperuricemia,Total HPRT Deficiencies,Total Hypoxanthine Guanine Phosphoribosyl Transferase Deficiency,X Linked Hyperuricemia,X Linked Primary Hyperuricemia,X-Linked Hyperuricemias,X-Linked Primary Hyperuricemias
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
February 1990, Mechanisms of ageing and development,
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
November 1987, Scandinavian journal of immunology,
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
January 1980, Developments in biological standardization,
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
January 1983, Developments in biological standardization,
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
January 1975, Federation proceedings,
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
February 1975, Experientia,
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
January 1986, Biokhimiia (Moscow, Russia),
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
January 1981, Journal of cellular physiology,
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
January 1990, Experimental gerontology,
H R Zielke, and P T Ozand, and J T Tildon, and D A Sevdalian, and M Cornblath
August 1974, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Copied contents to your clipboard!