Intestinal adaptation occurs independent of transforming growth factor-alpha. 2000

R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
Department of Surgery, University of Cincinnati College of Medicine, OH, USA.

OBJECTIVE Signal transduction via the epidermal growth factor receptor (EGFR) is critical for intestinal adaptation after massive small bowel resection (SBR). Although it has been assumed that the major ligand for the EGFR during adaptation is EGF, the role for transforming growth factor-alpha (TGF-alpha), another major ligand for the EGFR is unknown. The purpose of this study was to test the hypothesis that TGF-alpha is an important ligand for the EGFR during intestinal adaptation. METHODS Wild-type mice (C57BI/6) underwent a 50% proximal SBR or sham operation (bowel transection or reanastomosis) and were then assigned randomly to receive either intraperitoneal TGF-alpha or placebo. In a separate experiment, SBR or sham operations were performed in mice lacking TGF-alpha (Waved-1). After 3 days, adaptation was measured in the ileum. RESULTS Exogenous TGF-alpha enhanced intestinal adaptation in the wild-type mice after SBR as shown by increased ileal wet weight and DNA content. Normal adaptation occurred in the mice lacking TGF-alpha as shown by increased ileal wet weight, protein and DNA content, proliferation, villus height, and crypt depth. CONCLUSIONS Although exogenous TGF-alpha enhanced adaptation after massive SBR, adaptation was preserved in TGF-alpha-absent mice. These results refute TGF-alpha as an essential ligand for EGFR signaling during intestinal adaptation.

UI MeSH Term Description Entries
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016211 Transforming Growth Factor alpha An EPIDERMAL GROWTH FACTOR related protein that is found in a variety of tissues including EPITHELIUM, and maternal DECIDUA. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form which binds to the EGF RECEPTOR. Epidermal Growth Factor-Related Transforming Growth Factor,TGF-alpha,TGFalpha,Epidermal Growth Factor Related Transforming Growth Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D066246 ErbB Receptors A family of structurally related cell-surface receptors that signal through an intrinsic PROTEIN-TYROSINE KINASE. The receptors are activated upon binding of specific ligands which include EPIDERMAL GROWTH FACTORS, and NEUREGULINS. EGF Receptor,Epidermal Growth Factor Receptor,Epidermal Growth Factor Receptor Family Protein,Epidermal Growth Factor Receptor Protein-Tyrosine Kinase,ErbB Receptor,HER Family Receptor,Receptor, EGF,Receptor, Epidermal Growth Factor,Receptor, TGF-alpha,Receptor, Transforming-Growth Factor alpha,Receptor, Urogastrone,Receptors, Epidermal Growth Factor-Urogastrone,TGF-alpha Receptor,Transforming Growth Factor alpha Receptor,Urogastrone Receptor,c-erbB-1 Protein,erbB-1 Proto-Oncogene Protein,EGF Receptors,Epidermal Growth Factor Receptor Family Proteins,Epidermal Growth Factor Receptor Kinase,HER Family Receptors,Proto-oncogene c-ErbB-1 Protein,Receptor Tyrosine-protein Kinase erbB-1,Receptor, ErbB-1,Receptors, Epidermal Growth Factor,Epidermal Growth Factor Receptor Protein Tyrosine Kinase,ErbB-1 Receptor,Family Receptor, HER,Family Receptors, HER,Proto oncogene c ErbB 1 Protein,Proto-Oncogene Protein, erbB-1,Receptor Tyrosine protein Kinase erbB 1,Receptor, ErbB,Receptor, ErbB 1,Receptor, HER Family,Receptor, TGF alpha,Receptor, Transforming Growth Factor alpha,Receptors, EGF,Receptors, Epidermal Growth Factor Urogastrone,Receptors, ErbB,Receptors, HER Family,c erbB 1 Protein,c-ErbB-1 Protein, Proto-oncogene,erbB 1 Proto Oncogene Protein

Related Publications

R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
January 1998, Molecular and cellular biology,
R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
December 2002, The Journal of surgical research,
R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
August 1988, Cell,
R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
May 1995, Cell biology international,
R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
October 1988, Sheng li ke xue jin zhan [Progress in physiology],
R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
September 1990, Molecular reproduction and development,
R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
April 1991, Biochemical Society transactions,
R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
March 1996, Bailliere's clinical gastroenterology,
R A Falcone, and L E Stern, and C J Kemp, and C R Erwin, and B W Warner
May 1995, The Journal of investigative dermatology,
Copied contents to your clipboard!