Galectin-3 expression and subcellular localization in senescent human fibroblasts. 2000

K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
Department of Biochemistry, Michigan State University, East Lansing, Michigan, 48824, USA.

Galectin-3 is a galactose/lactose-binding protein (M(r) approximately 30,000), identified as a required factor in the splicing of pre-mRNA. In the LG1 strain of human diploid fibroblasts, galectin-3 could be found in both the nucleus and the cytoplasm of young, proliferating cells. In contrast, the protein was predominantly cytoplasmic in senescent LG1 cells that have lost replicative competence through in vitro culture. Incubation of young cells with leptomycin B, a drug that disrupts the interaction between the leucine-rich nuclear export signal and its receptor, resulted in the accumulation of galectin-3 inside the nucleus. In senescent cells, galectin-3 staining remained cytoplasmic even in the presence of the drug, thus suggesting that the observed localization in the cytoplasm was due to a lack of nuclear import. In heterodikaryons derived from fusion of young and senescent LG1 cells, the predominant phenotype was galectin-3 in both nuclei. These results suggest that senescent LG1 cells might lack a factor(s) specifically required for galectin-3 nuclear import.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D016922 Cellular Senescence Process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing CELL DEATH. Senescence can be induced by DNA DAMAGE or other cellular stresses, such as OXIDATIVE STRESS. Aging, Cell,Cell Aging,Cell Senescence,Replicative Senescence,Senescence, Cellular,Senescence, Replicative,Cell Ageing,Cellular Ageing,Cellular Aging,Ageing, Cell,Ageing, Cellular,Aging, Cellular,Senescence, Cell
D037502 Galectin 3 A multifunctional galactin initially discovered as a macrophage antigen that binds to IMMUNOGLOBULIN E, and as 29-35-kDa lectin that binds LAMININ. It is involved in a variety of biological events including interactions with galactose-containing glycoconjugates, cell proliferation, CELL DIFFERENTIATION, and APOPTOSIS. Mac-2 Antigen,CBP-30,CBP-35,CBP35,Carbohydrate-Binding Protein 35,Epsilon-Binding Protein,Galectin-3,HL-29,IgE Binding Protein,IgEBP,L-29 Lectin,L-31,L-34,L30 Lectin,LGALS3,Macrophage-2 Antigen,Antigen, Mac-2,Antigen, Macrophage-2,Binding Protein, IgE,Carbohydrate Binding Protein 35,Epsilon Binding Protein,L 29 Lectin,Mac 2 Antigen,Macrophage 2 Antigen,Protein, IgE Binding

Related Publications

K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
February 1995, Biochemical Society transactions,
K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
January 1989, Experimental gerontology,
K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
July 1995, Mechanisms of ageing and development,
K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
January 1992, Biology of the cell,
K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
June 2011, Molecular and cellular biochemistry,
K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
December 2016, Oncotarget,
K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
November 1992, Annals of the New York Academy of Sciences,
K P Openo, and M M Kadrofske, and R J Patterson, and J L Wang
June 1998, Experimental cell research,
Copied contents to your clipboard!