In vivo natural killer cell activities revealed by natural killer cell-deficient mice. 2000

S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
Howard Hughes Medical Institute, Rheumatology Division, Box 8045, Washington University School of Medicine, St. Louis, MO 63110, USA.

Studies of natural killer (NK) cell function in vivo have been challenging primarily due to the lack of animal models in which NK cells are genetically and selectively deficient. Here, we describe a transgenic mouse with defective natural killing and selective deficiency in NK1.1(+) CD3(-) cells. Despite functionally normal B, T, and NK/T cells, transgenic mice displayed impaired acute in vivo rejection of tumor cells. Adoptive transfer experiments confirmed that NK1.1(+) CD3(-) cells were responsible for acute tumor rejection, establishing the relationship of NK1.1(+) CD3(-) cells to NK cells. Additional studies provided evidence that (i) NK cells play an important role in suppressing tumor metastasis and outgrowth; (ii) NK cells are major producers of IFNgamma in response to bacterial endotoxin but not to interleukin-12, and; (iii) NK cells are not essential for humoral responses to T cell-independent type 2 antigen or the generalized Shwartzman reaction, both of which were previously proposed to involve NK cells.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009362 Neoplasm Metastasis The transfer of a neoplasm from one organ or part of the body to another remote from the primary site. Metastase,Metastasis,Metastases, Neoplasm,Metastasis, Neoplasm,Neoplasm Metastases,Metastases
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
May 1995, The Journal of experimental medicine,
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
April 1980, Nature,
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
April 1991, American journal of surgery,
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
March 2008, Virology,
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
November 1982, Obstetrics and gynecology,
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
January 1996, Chemical immunology,
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
December 2000, The Journal of experimental medicine,
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
January 2019, In vivo (Athens, Greece),
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
October 1984, Clinical and experimental immunology,
S Kim, and K Iizuka, and H L Aguila, and I L Weissman, and W M Yokoyama
April 1986, Scandinavian journal of immunology,
Copied contents to your clipboard!