Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. 2000

S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

A novel mannosylated cholesterol derivative, cholesten-5-yloxy-N-(4-((1-imino-2-beta-D-thiomannosyl -ethyl)amino)bu tyl) formamide (Man-C4-Chol), was synthesized in order to perform mannose receptor-mediated gene transfer with liposomes. Plasmid DNA encoding luciferase gene (pCMV-Luc) complexed with liposomes, consisting of a 6:4 mixture of Man-C4-Chol and dioleoylphosphatidylethanolamine (DOPE), showed higher transfection activity than that complexed with 3beta[N-(N', N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol)/DOPE(6:4) and N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA)/DOPE(1:1) liposomes in mouse peritoneal macrophages. The presence of 20 mM mannose significantly inhibited the transfection efficiency of pCMV-Luc complexed with Man-C4-Chol/DC- Chol/DOPE(3:3:4) and Man-C4-Chol/DOPE(6:4) liposomes. High gene expression of pCMV-Luc was observed in the liver after intravenously injecting mice with Man-C4-Chol/DOPE(6:4) liposomes, whereas DC-Chol/DOPE(6:4) liposomes only showed marked expression in the lung. The gene expression with Man-C4-Chol/DOPE(6:4) liposome/ DNA complexes in the liver was observed preferentially in the non-parenchymal cells and was significantly reduced by predosing with mannosylated bovine serum albumin. The gene expression in the liver was greater following intraportal injection. These results suggest that plasmid DNA complexed with mannosylated liposomes exhibits high transfection activity due to recognition by mannose receptors both in vitro and in vivo. Gene Therapy (2000) 7, 292-299.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D000090323 Mannose Receptor A member of a family of endocytic receptors. Highly expressed on human macrophages, involved in regulating endocytosis, phagocytosis, and immune responses. CD206 Antigen,Cluster of Differentiation 206,MRC1 Protein,Mannose Receptors,Mannose-Fucose Receptor,Mannosyl-Fucosyl Receptor,Receptor, Mannose,206 Cluster, Differentiation,Antigen, CD206,Differentiation 206 Cluster,Mannose Fucose Receptor,Protein, MRC1,Receptor, Mannose-Fucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018014 Gene Transfer Techniques The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms. Gene Delivery Systems,Gene Transfer Technique,Transgenesis,Delivery System, Gene,Delivery Systems, Gene,Gene Delivery System,Technique, Gene Transfer,Techniques, Gene Transfer,Transfer Technique, Gene,Transfer Techniques, Gene

Related Publications

S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
November 1998, Biochemical and biophysical research communications,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
September 2009, Biological & pharmaceutical bulletin,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
January 2003, Methods in enzymology,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
January 1996, Proceedings of the National Academy of Sciences of the United States of America,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
May 1994, Annals of the New York Academy of Sciences,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
January 2003, Methods in enzymology,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
April 2021, Macromolecular bioscience,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
August 2006, Journal of controlled release : official journal of the Controlled Release Society,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
June 2006, Biotechnology letters,
S Kawakami, and A Sato, and M Nishikawa, and F Yamashita, and M Hashida
April 1999, Human gene therapy,
Copied contents to your clipboard!