Disruption of coding regions by IS6110 insertion in Mycobacterium tuberculosis. 1999

S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
Department of Medical Biochemistry, University of Stellenbosch Medical School, Tygerberg.

METHODS The insertion sequence IS6110 is widely used as a DNA fingerprinting probe for the classification of Mycobacterium tuberculosis strains. This study has focused on the characterization of regions disrupted by insertion of the IS6110 element. OBJECTIVE To characterize IS6110 insertion loci in clinical isolates of M. tuberculosis, in terms of their genomic location and genetic identity, to ascertain whether IS6110 transposition could be a mechanism driving phenotypic change. METHODS Thirty-three IS6110 insertion loci were cloned from 8 clinical isolates of M. tuberculosis. Clones representing DR locus insertions were identified by hybridization (n = 4), and all other clones were characterized by DNA sequencing (n = 29). The sequence data was analyzed in conjunction with that of 43 other insertion loci identified in published literature and DNA sequence databases. RESULTS The 76 sequences analyzed represented 66 unique insertion loci (including 9 unique insertions into the ipl locus). When mapped to the H37Rv genome, the majority of unique insertion loci demonstrated disruption of coding regions by IS6110 (n = 42; including the ipl insertions), while the remainder either occurred within intergenic regions (n = 17), or could not be mapped to the H37Rv genome sequence (n = 7). Mapping of the insertion loci reveals distribution throughout the chromosome, with isolated preferential insertion loci. CONCLUSIONS This study has demonstrated the occurrence of 66 unique IS6110 insertion loci dispersed throughout the M. tuberculosis genome, with an unexpectedly high incidence of IS6110 insertions occurring within coding regions. However, the IS6110-mediated coding region disruptions identified here may only have limited impact on phenotype, as most of the coding regions disrupted are members of multiple gene families. Disruption of individual members of a family of genes may have no effect on phenotype or could have a minor or major impact, depending on the specificity and activity of the encoded protein.

UI MeSH Term Description Entries
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal
D016172 DNA Fingerprinting A technique for identifying individuals of a species that is based on the uniqueness of their DNA sequence. Uniqueness is determined by identifying which combination of allelic variations occur in the individual at a statistically relevant number of different loci. In forensic studies, RESTRICTION FRAGMENT LENGTH POLYMORPHISM of multiple, highly polymorphic VNTR LOCI or MICROSATELLITE REPEAT loci are analyzed. The number of loci used for the profile depends on the ALLELE FREQUENCY in the population. DNA Fingerprints,DNA Profiling,DNA Typing,Genetic Fingerprinting,DNA Fingerprint,DNA Fingerprintings,DNA Profilings,DNA Typings,Fingerprint, DNA,Fingerprinting, DNA,Fingerprinting, Genetic,Fingerprintings, DNA,Fingerprintings, Genetic,Fingerprints, DNA,Genetic Fingerprintings,Profiling, DNA,Typing, DNA,Typings, DNA
D016680 Genome, Bacterial The genetic complement of a BACTERIA as represented in its DNA. Bacterial Genome,Bacterial Genomes,Genomes, Bacterial
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA

Related Publications

S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
April 2010, Journal of clinical microbiology,
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
August 2000, Journal of clinical microbiology,
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
January 2009, Methods in molecular biology (Clifton, N.J.),
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
December 1990, Journal of clinical microbiology,
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
January 2001, Tuberculosis (Edinburgh, Scotland),
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
January 1997, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease,
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
February 1997, Journal of clinical microbiology,
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
September 1999, Molecular microbiology,
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
January 2012, Indian journal of medical microbiology,
S L Sampson, and R M Warren, and M Richardson, and G D van der Spuy, and P D van Helden
October 1992, Research in microbiology,
Copied contents to your clipboard!