Coordinate packaging of newly synthesized phosphatidylcholine and phosphatidylglycerol in lamellar bodies in alveolar type II cells. 2000

A Chander, and N Sen, and S Wadsworth, and A R Spitzer
Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA. Avinash.Chander@mail.tju.edu

Methylamine, a weak base, inhibits packaging of newly synthesized phosphatidylcholine (PC) in lamellar bodies in 20-22 h cultured alveolar type II cells, suggesting a role for acidic pH of lamellar bodies. In this study, we tested if (i) the packaging of PC is similarly regulated in freshly isolated type II cells and (ii) methylamine also inhibits the packaging of other surfactant phospholipids, particularly, phosphatidylglycerol (PG). The latter would suggest coordinated packaging so as to maintain the phospholipid composition of lung surfactant. During the short-term metabolic labeling experiments in freshly isolated type II cells, methylamine treatment decreased the incorporation of radioactive precursors into PC, disaturated PC (DSPC), and PG of lamellar bodies but not of the microsomes, when compared with controls. The calculated packaging (the percentage of microsomal lipid packaged in lamellar bodies) of each phospholipid was similarly decreased (approximately 50%) in methylamine-treated cells, suggesting coordinated packaging of surfactant phospholipids in lamellar bodies. Equilibrium-labeling studies with freshly isolated type II cells (as is routinely done for studies on surfactant secretion) +/- methylamine showed that in methylamine-treated cells, the secretion of PC and PG was decreased (possibly due to decreased packaging), but the phospholipid composition of released surfactant (measured by radioactivity distribution) was unchanged; and the PC content (measured by mass or radioactivity) of lamellar bodies was lower, but the PC composition (as percentage of total phospholipids) was unchanged when compared with control cells. We speculate that the newly synthesized surfactant phospholipids, PC, DSPC, and PG, are coordinately transported into lamellar bodies by a mechanism requiring the acidic pH, presumably, of lamellar bodies.

UI MeSH Term Description Entries
D008744 Methylamines Derivatives of methylamine (the structural formula CH3NH2).
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D011663 Pulmonary Surfactants Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI. Surfactants, Pulmonary,Pulmonary Surfactant,Surfactant, Pulmonary
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000643 Ammonium Chloride An acidifying agent that has expectorant and diuretic effects. Also used in etching and batteries and as a flux in electroplating. Sal Ammoniac,Ammoniac, Sal,Chloride, Ammonium

Related Publications

A Chander, and N Sen, and S Wadsworth, and A R Spitzer
June 1980, The Journal of biological chemistry,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
September 2020, Cell and tissue research,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
July 1984, Biochimica et biophysica acta,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
April 1996, The American journal of physiology,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
January 1975, Tissue & cell,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
March 1980, Thorax,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
May 1978, The Journal of biological chemistry,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
February 2024, Toxicology in vitro : an international journal published in association with BIBRA,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
October 1984, Proceedings of the National Academy of Sciences of the United States of America,
A Chander, and N Sen, and S Wadsworth, and A R Spitzer
January 1988, Histochemistry,
Copied contents to your clipboard!