Endothelin-1-induced ET(A) receptor-mediated nociception, hyperalgesia and oedema in the mouse hind-paw: modulation by simultaneous ET(B) receptor activation. 2000

A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Rua Ferreira Lima 82, Florianópolis, 88015-420, Brazil.

Endothelin-1 causes ET(A) receptor-mediated enhancement of capsaicin-induced nociception in mice. We have assessed if this hyperalgesic effect of endothelin-1 is also accompanied by other pro-inflammatory effects, namely nociception and oedema, and characterized the endothelin ET receptors involved. Intraplantar (i. pl.) hind-paw injection of endothelin-1 (0.3 - 30 pmol) induced graded nociceptive responses (accumulated licking time: vehicle, 20. 5+/-3.3 s; endothelin-1 at 30 pmol, 78.1+/-9.8 s), largely confined to the first 15 min. Endothelin-1 (1 - 10 pmol) potentiated ipsilateral capsaicin-induced (0.1 microgram, i.pl.; at 30 min) nociception (vehicle, 40.2+/-2.6 s; endothelin-1 at 10 pmol, 98.4+/-5.8 s, but 30 pmol was inactive), and caused oedema (increase in paw weight 5 min after capsaicin: vehicle, 46.3+/-2.3 mg; endothelin-1 at 30 pmol, 100.3+/-6.1 mg). Selective ET(B) receptor agonists sarafotoxin S6c (up to 30 pmol) and IRL 1620 (up to 100 pmol) were inactive, whereas endothelin-3 (up to 30 pmol) induced only modest oedema. ET(A) receptor antagonists BQ-123 (1 nmol, i.pl. ) or A-127722-5 (6 micromol kg(-1), i.v.) prevented all effects of endothelin-1 (10 pmol), but the ET(B) receptor antagonist BQ-788 (1 or 10 nmol, i.pl.) was ineffective. BQ-788 (10 nmol, i.pl.) unveiled hyperalgesic effects of 30 pmol endothelin-1 and endothelin-3. Sarafotoxin S6c (30 pmol, i.pl.) did not modify endothelin-1-induced (10 pmol) nociception or oedema, but abolished hyperalgesia. Thus, endothelin-1 triggers ET(A) receptor-mediated nociception, hyperalgesia and oedema in the mouse hind-paw. Simultaneous activation of ET(B) receptors by endothelin-1 or selective agonists can limit the hyperalgesic, but not the nociceptive or oedematogenic, effects of the peptide.

UI MeSH Term Description Entries
D008297 Male Males
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D010880 Piperidines A family of hexahydropyridines.
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D004487 Edema Abnormal fluid accumulation in TISSUES or body cavities. Most cases of edema are present under the SKIN in SUBCUTANEOUS TISSUE. Dropsy,Hydrops,Anasarca
D006930 Hyperalgesia An increased sensation of pain or discomfort produced by minimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve. Hyperalgesia, Tactile,Hyperalgesia, Thermal,Hyperalgia,Hyperalgia, Mechanical,Hyperalgia, Primary,Hyperalgia, Secondary,Allodynia,Allodynia, Mechanical,Allodynia, Tactile,Allodynia, Thermal,Hyperalgesia, Mechanical,Hyperalgesia, Primary,Hyperalgesia, Secondary,Hyperalgesic Sensations,Mechanical Allodynia,Mechanical Hyperalgesia,Tactile Allodynia,Thermal Allodynia,Allodynias,Hyperalgesias,Hyperalgesias, Thermal,Hyperalgesic Sensation,Mechanical Hyperalgia,Mechanical Hyperalgias,Primary Hyperalgia,Primary Hyperalgias,Secondary Hyperalgia,Secondary Hyperalgias,Sensation, Hyperalgesic,Sensations, Hyperalgesic,Thermal Hyperalgesia

Related Publications

A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
July 1992, British journal of pharmacology,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
May 1998, Toxicon : official journal of the International Society on Toxinology,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
February 2001, Life sciences,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
January 2002, Brain research,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
October 2003, Toxicon : official journal of the International Society on Toxinology,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
January 2007, Journal of vascular research,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
September 1998, Cardiovascular research,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
January 1979, Arzneimittel-Forschung,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
June 1994, Inflammation,
A P Piovezan, and P D'Orléans-Juste, and G E Souza, and G A Rae
November 1993, The Journal of pharmacy and pharmacology,
Copied contents to your clipboard!