Inflammatory mediators and modulation of blood-brain barrier permeability. 2000

N J Abbott
Division of Physiology, GKT School of Biomedical Sciences, King's College London, UK. joan.abbott@kcl.ac.uk

1. Unlike some interfaces between the blood and the nervous system (e.g., nerve perineurium), the brain endothelium forming the blood-brain barrier can be modulated by a range of inflammatory mediators. The mechanisms underlying this modulation are reviewed, and the implications for therapy of the brain discussed. 2. Methods for measuring blood-brain barrier permeability in situ include the use of radiolabeled tracers in parenchymal vessels and measurements of transendothelial resistance and rate of loss of fluorescent dye in single pial microvessels. In vitro studies on culture models provide details of the signal transduction mechanisms involved. 3. Routes for penetration of polar solutes across the brain endothelium include the paracellular tight junctional pathway (usually very tight) and vesicular mechanisms. Inflammatory mediators have been reported to influence both pathways, but the clearest evidence is for modulation of tight junctions. 4. In addition to the brain endothelium, cell types involved in inflammatory reactions include several closely associated cells including pericytes, astrocytes, smooth muscle, microglia, mast cells, and neurons. In situ it is often difficult to identify the site of action of a vasoactive agent. In vitro models of brain endothelium are experimentally simpler but may also lack important features generated in situ by cell:cell interaction (e.g. induction, signaling). 5. Many inflammatory agents increase both endothelial permeability and vessel diameter, together contributing to significant leak across the blood-brain barrier and cerebral edema. This review concentrates on changes in endothelial permeability by focusing on studies in which changes in vessel diameter are minimized. 6. Bradykinin (Bk) increases blood-brain barrier permeability by acting on B2 receptors. The downstream events reported include elevation of [Ca2+]i, activation of phospholipase A2, release of arachidonic acid, and production of free radicals, with evidence that IL-1 beta potentiates the actions of Bk in ischemia. 7. Serotonin (5HT) has been reported to increase blood-brain barrier permeability in some but not all studies. Where barrier opening was seen, there was evidence for activation of 5-HT2 receptors and a calcium-dependent permeability increase. 8. Histamine is one of the few central nervous system neurotransmitters found to cause consistent blood-brain barrier opening. The earlier literature was unclear, but studies of pial vessels and cultured endothelium reveal increased permeability mediated by H2 receptors and elevation of [Ca2+]i and an H1 receptor-mediated reduction in permeability coupled to an elevation of cAMP. 9. Brain endothelial cells express nucleotide receptors for ATP, UTP, and ADP, with activation causing increased blood-brain barrier permeability. The effects are mediated predominantly via a P2U (P2Y2) G-protein-coupled receptor causing an elevation of [Ca2+]i; a P2Y1 receptor acting via inhibition of adenyl cyclase has been reported in some in vitro preparations. 10. Arachidonic acid is elevated in some neural pathologies and causes gross opening of the blood-brain barrier to large molecules including proteins. There is evidence that arachidonic acid acts via generation of free radicals in the course of its metabolism by cyclooxygenase and lipoxygenase pathways. 11. The mechanisms described reveal a range of interrelated pathways by which influences from the brain side or the blood side can modulate blood-brain barrier permeability. Knowledge of the mechanisms is already being exploited for deliberate opening of the blood-brain barrier for drug delivery to the brain, and the pathways capable of reducing permeability hold promise for therapeutic treatment of inflammation and cerebral edema.

UI MeSH Term Description Entries
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D018836 Inflammation Mediators The endogenous compounds that mediate inflammation (AUTACOIDS) and related exogenous compounds including the synthetic prostaglandins (PROSTAGLANDINS, SYNTHETIC). Mediators of Inflammation,Mediators, Inflammation

Related Publications

N J Abbott
January 1996, Journal of drug targeting,
N J Abbott
January 1983, Acta neuropathologica. Supplementum,
N J Abbott
August 2007, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
N J Abbott
January 1988, Hepatology (Baltimore, Md.),
N J Abbott
October 1987, Neuroscience letters,
N J Abbott
January 1998, Progress in brain research,
N J Abbott
November 2013, Current neurovascular research,
Copied contents to your clipboard!