Translational frameshifting: implications for the mechanism of translational frame maintenance. 2000

P J Farabaugh
Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland, Baltimore County 21250, USA.

The ribosome rapidly translates the information in the nucleic sequence of mRNA into the amino acid sequence of proteins. As with any biological process, translation is not completely accurate; it must compromise the antagonistic demands of increased speed and greater accuracy. Yet, reading-frame errors are especially infrequent, occurring at least 10 times less frequently than other errors. How do ribosomes maintain the reading frame so faithfully? Geneticists have addressed this question by identifying suppressors that increase error frequency. Most familiar are the frameshift suppressor tRNAs, though other suppressors include mutant forms of rRNA, ribosomal proteins, or translation factors. Certain mRNA sequences can also program frameshifting by normal ribosomes. The models of suppression and programmed frameshifting describe apparently quite different mechanisms. Contemporary work has questioned the long-accepted model for frameshift suppression by mutant tRNAs, and a unified explanation has been proposed for both phenomena. The Quadruplet Translocation Model proposes that suppressor tRNAs cause frameshifting by recognizing an expanded mRNA codon. The new data are inconsistent with this model for some tRNAs, implying the model may be invalid for all. A new model for frameshift suppression involves slippage caused by a weak, near-cognate codon.anticodon interaction. This strongly resembles the mechanism of +1 programmed frameshifting. This may mean that infrequent frameshift errors by normal ribosomes may result from two successive errors: misreading by a near-cognate tRNA, which causes a subsequent shift in reading frame. Ribosomes may avoid phenotypically serious frame errors by restricting apparently innocuous errors of sense.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D018965 Frameshifting, Ribosomal A directed change in translational READING FRAMES that allows the production of a single protein from two or more OVERLAPPING GENES. The process is programmed by the nucleotide sequence of the MRNA and is sometimes also affected by the secondary or tertiary mRNA structure. It has been described mainly in VIRUSES (especially RETROVIRUSES); RETROTRANSPOSONS; and bacterial insertion elements but also in some cellular genes. Frameshifting, Translational,Ribosomal Frameshifting,Ribosomal Frame Shift,Ribosomal Frame Shifting,Ribosomal Frameshift,Frame Shift, Ribosomal,Frame Shifting, Ribosomal,Frame Shifts, Ribosomal,Frameshift, Ribosomal,Frameshifts, Ribosomal,Ribosomal Frame Shifts,Ribosomal Frameshifts,Translational Frameshifting
Copied contents to your clipboard!