Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection. 1999

B B Anderson, and A G Ewing
Pennsylvania State University, Department of Chemistry, University Park 16802, USA.

The identified dopamine cell of Planorbis corneus is described as a model system to study neurotransmitter storage and dynamics. Techniques developed with this model system include capillary electrophoresis with electrochemical detection and microelectrochemistry at single cells. These techniques provide a powerful combination to examine single cell neurochemistry. Whole cell and cytoplasmic dopamine concentrations have been quantified with capillary electrophoresis. Additionally, this technique has been used to profile amino acids and to quantify two compartments of neurotransmitter in a single cell. Individual exocytosis events have been monitored at the cell body of the dopamine cell of P. corneus with microelectrodes. In this case, two different types of vesicles have been identified based on the amount of transmitter released. The psychostimulant, amphetamine, has been shown to selectively affect the amount of dopamine in these vesicles with lower to higher doses affecting the larger to smaller vesicle types, respectively. Microelectrochemistry at single nerve cells has also been used to demonstrate reverse transport of dopamine across the cell membrane and to suggest a role of this process in the molecular mechanism of amphetamine.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012908 Snails Marine, freshwater, or terrestrial mollusks of the class Gastropoda. Most have an enclosing spiral shell, and several genera harbor parasites pathogenic to man. Snail
D019075 Electrophoresis, Capillary A highly-sensitive (in the picomolar range, which is 10,000-fold more sensitive than conventional electrophoresis) and efficient technique that allows separation of PROTEINS; NUCLEIC ACIDS; and CARBOHYDRATES. (Segen, Dictionary of Modern Medicine, 1992) Capillary Zone Electrophoresis,Capillary Electrophoreses,Capillary Electrophoresis,Capillary Zone Electrophoreses,Electrophoreses, Capillary,Electrophoreses, Capillary Zone,Electrophoresis, Capillary Zone,Zone Electrophoreses, Capillary,Zone Electrophoresis, Capillary

Related Publications

B B Anderson, and A G Ewing
November 1975, Cell and tissue research,
B B Anderson, and A G Ewing
September 1975, The Journal of physiology,
B B Anderson, and A G Ewing
November 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B B Anderson, and A G Ewing
March 1970, Comparative and general pharmacology,
B B Anderson, and A G Ewing
December 1961, Comparative biochemistry and physiology,
B B Anderson, and A G Ewing
September 1975, The Journal of physiology,
B B Anderson, and A G Ewing
June 1975, Comparative biochemistry and physiology. C: Comparative pharmacology,
Copied contents to your clipboard!