Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. 2000

B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.

The particulate methane monooxygenase gene clusters, pmoCAB, from two representative type II methanotrophs of the alpha-Proteobacteria, Methylosinus trichosporium OB3b and Methylocystis sp. strain M, have been cloned and sequenced. Primer extension experiments revealed that the pmo cluster is probably transcribed from a single transcriptional start site located 300 bp upstream of the start of the first gene, pmoC, for Methylocystis sp. strain M. Immediately upstream of the putative start site, consensus sequences for sigma(70) promoters were identified, suggesting that these pmo genes are recognized by sigma(70) and negatively regulated under low-copper conditions. The pmo genes were cloned in several overlapping fragments, since parts of these genes appeared to be toxic to the Escherichia coli host. Methanotrophs contain two virtually identical copies of pmo genes, and it was necessary to use Southern blotting and probing with pmo gene fragments in order to differentiate between the two pmoCAB clusters in both methanotrophs. The complete DNA sequence of one copy of pmo genes from each organism is reported here. The gene sequences are 84% similar to each other and 75% similar to that of a type I methanotroph of the gamma-Proteobacteria, Methylococcus capsulatus Bath. The derived proteins PmoC and PmoA are predicted to be highly hydrophobic and consist mainly of transmembrane-spanning regions, whereas PmoB has only two putative transmembrane-spanning helices. Hybridization experiments showed that there are two copies of pmoC in both M. trichosporium OB3b and Methylocystis sp. strain M, and not three copies as found in M. capsulatus Bath.

UI MeSH Term Description Entries
D008697 Methane The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
May 2004, Applied and environmental microbiology,
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
June 1995, Journal of bacteriology,
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
January 1999, Archives of microbiology,
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
September 2022, Nature communications,
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
January 2004, Marine biotechnology (New York, N.Y.),
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
February 2011, Environmental microbiology reports,
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
March 2009, Wei sheng wu xue bao = Acta microbiologica Sinica,
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
June 2009, Applied biochemistry and biotechnology,
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
January 2011, Methods in enzymology,
B Gilbert, and I R McDonald, and R Finch, and G P Stafford, and A K Nielsen, and J C Murrell
November 1997, FEMS microbiology letters,
Copied contents to your clipboard!