Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. 2000

M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
Department of Pharmacology, Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.

Recently, it was demonstrated that liver injury and TNF-alpha production as a result of endotoxin (lipopolysaccharide, LPS) were attenuated by feeding animals a diet enriched with glycine. This phenomenon was shown to be a result of, at least in part, activation of a chloride channel in Kupffer cells by glycine, which hyperpolarizes the cell membrane and blunts increases in intracellular calcium concentrations ([Ca(2+)](i)) similar to its action in the neuron. It is well known that hepatotoxicity due to LPS has a neutrophil-mediated component and that activation of neutrophils is dependent on increases in [Ca(2+)](i). Therefore, the purpose of this study was to determine if glycine affected agonist-induced increases in [Ca(2+)](i) in rat neutrophils. The effect of glycine on increases in [Ca(2+)](i) elicited either by the bacterial-derived peptide formyl-methionine-leucine-phenylalanine (FMLP) or LPS was studied in individual neutrophils using Fura-2 and fluorescence microscopy. Both FMLP and LPS caused dose-dependent increases in [Ca(2+)](i), which were maximal at 1 microM FMLP and 100 microgram/ml LPS, respectively. LPS increased intracellular calcium in the presence and absence of extracellular calcium. Glycine blunted increases in [Ca(2+)](i) in a dose-dependent manner with an IC(50) of approximately 0.3 mM, values only slightly higher than plasma levels. Glycine was unable to prevent agonist-induced increases in [Ca(2+)](i) in chloride-free buffer. Moreover, strychnine (1 microM), an antagonist of the glycine-gated chloride channel in the central nervous system, reversed the effects of glycine (1 mM) on FMLP- or LPS-stimulated increases in [Ca(2+)](i). To provide hard evidence for a glycine-gated chloride channel in the neutrophil, the effect of glycine on radioactive chloride uptake was determined. Glycine caused a dose-dependent increase in chloride uptake into neutrophils with an ED(50) of approximately 0.4 mM, an effect also prevented by 1 microM strychnine. Glycine also significantly reduced the production of superoxide anion from FMLP-stimulated neutrophils. Taken together, these data provide clear evidence that neutrophils contain a glycine-gated chloride channel that can attenuate increases in [Ca(2+)](i) and diminish oxidant production by this important leukocyte.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005260 Female Females
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium

Related Publications

M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
November 2008, Journal of leukocyte biology,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
January 2007, Journal of neurochemistry,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
October 1986, Biochemical pharmacology,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
January 1988, Advances in biochemical psychopharmacology,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
April 2006, Journal of neurophysiology,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
May 2000, Journal of cellular biochemistry,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
December 2010, PloS one,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
February 2000, American journal of physiology. Cell physiology,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
September 2013, Translational neuroscience,
M Wheeler, and R F Stachlewitz, and S Yamashina, and K Ikejima, and A L Morrow, and R G Thurman
November 2012, The Journal of biological chemistry,
Copied contents to your clipboard!