Bacterial resistance to aminoglycosides and beta-lactams: the Tn1331 transposon paradigm. 2000

M E Tolmasky
Institute of Molecular Biology and Nutrition, Department of Biological Science, California State University Fullerton, Fullerton, CA 92834-6850, USA. Mtolmasky@fullerton.edu

Aminoglycosides (Ags) are a group of antibiotics that exert their bactericidal activity primarily by inhibition of protein synthesis. Aminoglycoside (Ag) molecules bind to the bacterial 30S ribosomal subunit rendering the ribosomes unavailable for translation, which results in cell death. Although these antibiotics are and have been very useful to treat a variety of bacterial infections, in recent years the number of Ag resistant and multiresistant isolates has seriously increased. Mechanisms of resistance to Ag include enzymatic inactivation by acetyltransferases, nucleotidyltransferases (adenylyltransferases), and phosphotransferases, ribosomal alterations, and reduced permeability. Of all Ags, amikacin (Ak) is the most resistant to the action of Ag-modifying enzymes. However, AAC(6')-I type enzymes (a group of 6'-N-acetyltransferases) can utilize Ak as substrate and confer resistance to this antibiotic in addition to other Ags. The gene aac(6')-Ib was found in various bacterial species and various research groups performed mutagenesis studies on this or related enzymes. In one case, aac(6')-Ib was identified in a transposable element, Tn1331, included in pJHCMW1, a plasmid isolated from a clinical K. pneumoniae strain. Tn1331 includes genes encoding two Ag-modifying enzymes (aac(6')-Ib and ant(3")-Ia) and two beta-lactamases (blaTEM and blaOXA-9). Characterization of other functions of the pJHCMW1 plasmid showed the presence of an RNA-regulated replication origin and a functional oriT. Stability by multimer resolution is achieved by the Tn1331 resolvase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000617 Aminoglycosides Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS. Aminoglycoside
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D047090 beta-Lactams Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria. beta-Lactam,4-Thia-1-Azabicyclo(3.2.0)Heptanes,4-Thia-1-Azabicyclo(4.2.0)Octanes,beta Lactam,beta Lactams
D018432 Drug Resistance, Multiple Simultaneous resistance to several structurally and functionally distinct drugs. Drug Resistance, Extensively,Extensively Drug Resistance,Extensively-Drug Resistance,Multidrug Resistance,Multi-Drug Resistance,Extensively Drug Resistances,Extensively-Drug Resistances,Multiple Drug Resistance,Resistance, Extensively Drug,Resistance, Extensively-Drug,Resistance, Multiple Drug
D018440 beta-Lactam Resistance Nonsusceptibility of bacteria to the action of the beta-lactam antibiotics. Mechanisms responsible for beta-lactam resistance may be degradation of antibiotics by BETA-LACTAMASES, failure of antibiotics to penetrate, or low-affinity binding of antibiotics to targets. beta-Lactam Resistant,beta-Lactamase Resistance,beta-Lactamase Resistant,Resistance, beta-Lactamase,Resistant, beta-Lactamase,beta Lactam Resistance,beta Lactam Resistant,beta Lactamase Resistance,beta Lactamase Resistant

Related Publications

M E Tolmasky
December 1987, The Journal of antimicrobial chemotherapy,
M E Tolmasky
October 1991, Indian journal of pathology & microbiology,
M E Tolmasky
October 1993, Antimicrobial agents and chemotherapy,
M E Tolmasky
May 1997, Nihon rinsho. Japanese journal of clinical medicine,
M E Tolmasky
November 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
M E Tolmasky
January 1997, Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic],
M E Tolmasky
January 2006, Scandinavian journal of infectious diseases,
Copied contents to your clipboard!