Evaluation of the pharmacological actions and pharmacokinetics of BOF-4272, a xanthine oxidase inhibitor, in mouse liver. 2000

S Naito, and M Nishimura, and Y Tamao
Laboratory of Drug Metabolism Research, Naruto Research Institute, Otsuka Pharmaceutical Factor, Inc., Tokushima, Japan.

BOF-4272 (+/-)-8-(3-methoxy-4-phenylsulphinylphenyl) pyrazolo[1,5-a]-1,3,5-triazine-4-(1H)-one, a new synthetic anti-hyperuricaemic drug, which has a chiral centre and exists as racemates, is a potent inhibitor of xanthine oxidase/dehydrogenase in the purine catabolism pathways. The present studies using mice demonstrated that BOF-4272 was specifically distributed in the liver, which is the main organ of uric acid production. Therefore, a decrease in uric acid concentration in the liver, rather than the plasma, was identified as a pharmacological action of BOF-4272. The ratio of liver to plasma concentrations of BOF-4272 increased from 2.5 to 6.3 over time, up to 8 h after oral administration. The elimination half-life of BOF-4272 in the liver was 5-1-fold longer than that in the plasma. High concentrations of BOF-4272 were observed in the liver up to 8 h after oral administration. Furthermore, the influx of BOF-4272 into hepatocytes occurred in a temperature-dependent manner. The liver concentrations of uric acid from 1 h to 8 h after the oral administration of BOF-4272 (0.34-0.75 microg (g tissue)(-1)) were significantly lower than those in control animals (5.03-10.96 microg (g tissue)(-1)). BOF-4269 (the sulphide metabolite of BOF-4272) was the only metabolite detected in plasma or faeces after intravenous or oral administration. BOF-4269, which has no inhibitory action on the uric acid biosynthesis system, is generated by the metabolism of BOF-4272 in the intestinal tract. In conclusion, this work using the liver as the target organ has allowed us to identify the pharmacological actions of BOF-4272 in mice. The long-lasting effect of BOF-4272 in reducing levels of hepatic uric acid was consistent with the prolonged high BOF-4272 concentrations in the liver. These results also demonstrate that the mouse is a suitable animal species for evaluating the clinical pharmacology and pharmacokinetics of BOF-4272.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014227 Triazines Heterocyclic rings containing three nitrogen atoms, commonly in 1,2,4 or 1,3,5 or 2,4,6 formats. Some are used as HERBICIDES. Triazine,Benzotriazines
D014527 Uric Acid An oxidation product, via XANTHINE OXIDASE, of oxypurines such as XANTHINE and HYPOXANTHINE. It is the final oxidation product of purine catabolism in humans and primates, whereas in most other mammals URATE OXIDASE further oxidizes it to ALLANTOIN. 2,6,8-Trihydroxypurine,Ammonium Acid Urate,Monosodium Urate,Monosodium Urate Monohydrate,Potassium Urate,Sodium Acid Urate,Sodium Acid Urate Monohydrate,Sodium Urate,Sodium Urate Monohydrate,Trioxopurine,Urate,Acid Urate, Ammonium,Acid Urate, Sodium,Acid, Uric,Monohydrate, Monosodium Urate,Monohydrate, Sodium Urate,Urate Monohydrate, Monosodium,Urate Monohydrate, Sodium,Urate, Ammonium Acid,Urate, Monosodium,Urate, Potassium,Urate, Sodium,Urate, Sodium Acid
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S Naito, and M Nishimura, and Y Tamao
January 1991, Advances in experimental medicine and biology,
S Naito, and M Nishimura, and Y Tamao
August 1994, The Journal of pharmacology and experimental therapeutics,
S Naito, and M Nishimura, and Y Tamao
January 1981, Animal blood groups and biochemical genetics,
S Naito, and M Nishimura, and Y Tamao
June 1990, Archives of biochemistry and biophysics,
S Naito, and M Nishimura, and Y Tamao
October 2004, Nucleosides, nucleotides & nucleic acids,
S Naito, and M Nishimura, and Y Tamao
January 2015, Drug design, development and therapy,
S Naito, and M Nishimura, and Y Tamao
November 1954, The Journal of biological chemistry,
S Naito, and M Nishimura, and Y Tamao
March 1968, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
S Naito, and M Nishimura, and Y Tamao
November 1960, Biochimica et biophysica acta,
Copied contents to your clipboard!